Available online <u>www.tpcj.org</u>

Research Article

ISSN: 2349-7092 CODEN(USA): PCJHBA

Constituents and Antioxidant Activity of Raphanus sativus L. Grown in Turkey

Abdel Karim, M.*¹, Salwa A. Ateem^{1,2}, Faiza, I.³

¹Sudan University of Science and Technology, Faculty of Science, Sudan

²Alzaiem Alazhari University, Faculty of Education, Department of Chemistry, Sudan

³University of Hail, Faculty of Science, Kingdom of Saudi Arabia

Abstract The oil from *Raphanus sativus* L. seeds was characterized by GC-MS. A total of 25 components were identified and quantified. Major constituents are: 13-docosenoic acid, methyl ester, (Z)-(28.02%), cis-13-eicosenoic acid, methyl ester (15.35%), 9,12- octadecadienoic acid -(Z)-, methyl ester (12.75%) and hexadecanoic acid, methyl ester (8.63%). The antioxidant activity of *Raphanus sativeus* essential oil was conducted by different methods: metal chelating, free radical (DPPH') and superoxide anion scavenging activity compared to standard antioxidants: BHT (butylated hydroxyl toluene), BHA (butylated hydroxyl anisole) and trolox. In the DPPH assay, the studied oil showed IC₅₀: 68.65±1.23 close to that of the standard antioxidant: butylated hydroxyl toluene (BHT)–(IC₅₀ 61.11±1.78). In the superoxide anion scavenging assay, the oil sample gave: IC₅₀ 123.19±7.63 while the positive controls showed: BHT(IC₅₀, 60.5±0.22) and Trolox (IC₅₀ 54.98±0.17). However, in the metal chelating assay the oil showed IC₅₀: 132.53±0.80) while the positive control -EDTA gave: IC₅₀ 7.05±0.29.

Keywords Raphanus sativus L., Oil, GC-MS Analysis, Antioxidant Activity

Introduction

Raphanus sativus L. is an annual herb in the family Cruciferous. This herb is consumed as vegetable throughout the world. It has many varieties differing mainly in the size, shape and color of their roots [1]. Though leave and stem have been used in foods as flavoring agents, the root is valued as a natural remedy [2]. Root is used traditionally for stones, gravel, and scorbutic conditions [3,4]. It is also used against disorders of the respiratory, urinary and gastrointestinal systems, female and male infertility and skin infections [1,5]. *Raphanus sativus* contains many essential minerals and vitamins.

The plant also contains carbohydrates and fiber [6]. Many of the interesting pharmacological properties attributed to *Raphanus sativus* are due to a wide range of secondary metabolites, including alkaloids, phenolics, flavonods, coumarins, carotenoids, terpenes and other phytochemicals.

Material and Method

Collection of Plant Material

Raphanus sativus L. seeds were purchased from a local market - Cankiri Kartekin city, Turkey. The plant material was taxonomically authenticated by comparison with a reference herbarium sample.

Chemicals

2,2-Diphenyl-1-picryldhydrazyl (DPPH); 2,2⁻-anizobis(3-ethylbenzothiazoline)-6-sulphonic acid (ABTS); ascorbic acid(ASC); butylated hydroxytoluene (BHT); nicotamide adenine dinucleotide (NADH); nitroblue tetrazolium (NBT); butylated hydroxyanisole (BHA) were procured from sigma chemical company (USA).

Extraction of oil from Raphanus sativus

Dry powdered of *Raphanus sativus* seeds (150g) were extracted with n-hexane at room temperature for 72h and filtrated. The solvent was removed under reduced pressure to yield the oil.

Instrumentation and chromatographic conditions

Instrument: Shimadzu GC-MS QP2010 Ultra (Japan) Carrier gas: Helium

Oven temperature program

Rate	Temperature (°C)	Hold time (min ⁻¹)		
-	60.0	0.00		
10	300.0	0.00		

Chromatographic conditions

Colunm Oven Temp.:	60.0 °C
Injection Temp.:	300.0 °C
Injection Mode:	Split
Flow Control Mode:	Linear Velocity
Pressure:	100.0 kPa
Purge Flow:	3.0mL/min
Split Ratio:	1.0

GC Program (GC-MS –QP2010 Ultra)

Ion Source Temp.:	200.00°C
Interface Temp.:	250.00°C
Solvent Cut Time:	2.50min
Detector Gain Mode:	Relative
Detector Gain:	0.86 kv +0.00kv
Threshold:	0

Determination of antioxidant activity

The antioxidant activity of *Raphanus sativeus* oil was conducted by different methods: metal chelating, free radical (DPPH) and superoxide anion scavenging activity compared to positive standards. The metal chelating, free radical and superoxide anion scavenging activity were tested at different concentration to calculate IC_{50} (µg / ml) and r^2 values. All antioxidant assays were carried out in triplicate.

Free radical scavenging activity

In this assay, the bleaching rate of a stable free radical (DPPH') is monitored at a characteristic wavelength (λ_{max} 517 nm) in the presence of sample. The test sample was mixed with DPPH' (0.1 mM, 0.5 ml). The absorbance was recorded at λ_{max} 517 nm and compared with standards. During this assay there was a change in color from purple to yellow.

Metal chelating activity

Ferrozine produces a violet complex with Fe²⁺. In the presence of a chelating agent, complex formation is interrupted and as a result the violet color of the complex is decreased [7]. The Fe²⁺-chelating activity of the sample was recorded using the absorbance of the ferrozine-Fe²⁺complex at λ_{max} 562 nm. The sample was added to FeCl₂ (2 mM, 0.05 mL). The test was initiated by the addition of ferrozine. The absorbance of the mixture was recorded at λ_{max} 562 nm after incubating at room temperature for 10 min.

Superoxide anion scavenging activity

The activity of the sample was estimated according to the methods of Nishikimi et al [8] and Zhao et al [9] with minor modification. Superoxide radicals were generated in a PMS-NADH system by oxidation of NADH and assayed by reduction of NBT. Briefly, a (1 ml) sample was thoroughly mixed separately with of (156 μ M) NBT and (468 μ M) NADH, respectively. The reaction started by adding (60 μ M) PMS. After incubation, the absorbance of the mixture was measured at λ_{max} 532 nm. A decrease in absorbance of the mixture indicates an increase in superoxide anion-scavenging activity.

Results and Discussion

Gas chromatography - mass spectrometry has been used for the identification and quantification of the studied oil. The analysis revealed the presence of 25 components – Table 1.

No.	Name	Ret. Time	Area%					
1.	Methyl tetradecanoate	14.198	0.18					
2.	Pentadecanoic acid, methyl ester	15.326	0.05					
3.	7,10-Hexadecadienoic acid, methyl ester	16.098	0.18					
4.	7-Hexadecenoic acid, methyl ester, (Z)-	16.175	0.09					
5.	9-Hexadecenoic acid, methyl ester, (Z)-	16.204	0.54					
6.	Hexadecanoic acid, methyl ester	16.410	8.63					
7.	cis-10-Heptadecenoic acid, methyl ester	17.221	0.10					
8.	Heptadecanoic acid, methyl ester	17.433	0.10					
9.	9,12-Octadecadienoic acid (Z,Z)-, methyl ester	18.174	12.75					
10.	9-Octadecenoic acid (Z)-, methyl ester	18.253	7.10					
11.	9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)-	18.279	4.26					
12.	Methyl stearate	18.424	4.33					
13.	gammaLinolenic acid, methyl ester	19.930	1.10					
14.	cis-13-Eicosenoic acid, methyl ester	20.090	15.35					
15.	cis-11-Eicosenoic acid, methyl ester	20.129	1.66					
16.	Eicosanoic acid, methyl ester	20.267	3.33					
17.	8,11-Eicosadienoic acid, methyl ester	20.551	0.07					
18.	13-Docosenoic acid, methyl ester, (Z)-	21.852	28.02					
19.	Docosanoic acid, methyl ester	21.971	2.59					
20.	cis-10-Nonadecenoic acid, methyl ester	22.602	0.14					
21.	Tricosanoic acid, methyl ester	22.769	0.08					
22.	15-Tetracosenoic acid, methyl ester, (Z)-	23.391	5.55					
23.	Tetracosanoic acid, methyl ester	23.544	2.46					
24.	D:B-Friedo-B':A'-neogammacer-5-en-3-ol, (3.beta.)-	23.875	1.17					
25.	Hexacosanoic acid, methyl ester	25.112	0.17					

 Table 1: Constituent of Raphanus sativus L. seed oil

The fallowing compounds were detected in the chromatogram as major constituents:

i) 13-Docosenoic acid, methyl ester, (Z)-(28.02%)

ii) cis-13-Eicosenoic acid, methyl ester (15.35 %)

iii) 9,12-Octadecadienoic acid (Z,Z)-, methyl ester (12.75 %).

iv) Hexadecanoic acid, methyl ester (8.63 %)

v) 9-Octadecenoic acid methyl ester (7.10%)

Fig. 1 shows the mass spectrum of 13-docosenoic acid, methyl ester. The peak at m/z 352 which appeared at RT. 21.852 in total ion chromatogram corresponds M^+ [$C_{23}H_{44}O_2$], while the peak at m/z 320 corresponds to loss of a methoxy. The mass spectrum of cis-13-eicosenoic acid, methyl ester is presented in Fig. 2. The peak at m/z 324 which appeared at (RT.20.090) is due to M^+ [$C_{21}H_{40}O_2$], while the peak at m/z 292 corresponds to loss of a methoxy. Fig. 3 illustrates the mass spectrum of 9,12-octadecadienoic acid (Z,Z)-, methyl ester. The signal at m/z 294 which appeared at RT 18.174 accounts for the molecular ion: M^+ [$C_{19}H_{34}O_2$]. The peak at m/z 263 is attributed to loss of a methoxyl. Fig. 4 shows the mass spectrum of hexadecanoic acid methyl ester. The signal at m/z 270 (RT.16.410) is due to M^+ [$C_{17}H_{34}O_2$], while the peak at m/z 239 is attributed to loss of a methoxyl function. Fig. 5 shows the mass spectrum of 9- octadecenoic acid methyl ester. The molecular ion: M^+ [$C_{19}H_{36}O_2$] appeared at m/z 296.

9,12-octadecadienoic acid methyl ester

Antioxidant Assay

The antioxidant activity of *Raphanus sativeus* essential oil was conducted by different methods: metal chelating, free radical (DPPH) and superoxide anion scavenging activity compared to standard antioxidants: BHT (butylated hydroxyl toluene), BHA (butylated hydroxyl anisole) and trolox. In the DPPH assay, the studied oil showed IC₅₀: 68.65 ± 1.23 close to that of the standard antioxidant: butylated hydroxyl toluene (BHT) – (IC₅₀ 61.11±1.78). In the superoxide anion scavenging assay, the oil sample gave: IC₅₀ 123.19±7.63 while the positive controls showed: BHT

 $(IC_{50}, 60.5\pm0.22)$ and Trolox $(IC_{50}, 54.98\pm0.17)$. However, in the metal chelating assay the oil showed IC_{50} : 132.53±0.80) while the positive control-EDTA gave: $IC_{50}, 7.05\pm0.29$.

Sample	Free radical (DPPH·) scavenging activity		Metal activity	chelating	Superoxide scavenging acti	anion vitv
Sumple	IC ₅₀ , μg/mL	r^2	IC ₅₀ , μ g/mL	\mathbf{r}^2	IC ₅₀ , μg/mL	r ²
Oil	68.65±1.23	0.87	132.53±0.80	0.66	123.19±7.63	0.98
BHA	$80.14{\pm}1.01$	0.79	-	-	18.22 ± 0.17	0.99
BHT	61.11±1.78	0.96	-	-	60.5±0.22	0.94
Trolox	31.57±2.07	0.95	-	-	54.98 ± 0.17	0.89
EDTA	-	-	7.05±0.29	0.95	-	-

Table 3: IC_{50} and r^2 values of for antioxidant activity

References

- [1]. Aruna, G., Yerragunt, V.G. and Raju, A.B., "Phytochemistry and Pharmacogy of Raphanus sativus, Intrenational Journal of drug Farmudation and Research, 2012, 13(1): 43-53.
- [2]. Beevi, S.S., Mangamoori, L.N. and Aabrolu, N., Compartive activity against pathogenic bacteria of the root, steem and leaves of Raphanus sativus grown in India, World Journal of Microbiology and Biotechnology, 2009, 25(3): 465-473.
- [3]. Kadhim, M.J., Sasa, S.S. and Hamid, I.H., Evaluation of antibacteral activity and bioactive chemical analysis of Ocimum basilicum using fourier trans from infra red (FT-IR) and gas chomatography mass spectrometry (GC-MS) Techniques. International Journal of pharmacognosy and Phytochemical Research, 2016, 8(6): 127-146.
- [4]. Hussen, I.H., Ibraheem, O.A., Antimicrobial Activity and spectral chemical analysis of methenolic leaves extract of Adiantum Capillus Veneris using GC-MS AND FT-IR spectroscopy, International Journal of Pharmacgonsy and Phytochecmical Rrseach, 2016, (2): 10-30.
- [5]. Said, O., Khalil, K., Fulder, S. and H. Azaieh, H., Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the West Bank region, Journal of Ethnopharmacology, 2002, 83(3): 251-265.
- [6]. Shukla, S., Chidambara, K.N. and Patil, B.S., Crucial facts about health benefits of popular cruciferous vegetables, Journal of Functional Foods 2012, 4(1): 94-106.
- [7]. Haro-Vicente, J.F., Martinez-Gracia, C., Ros, G. Optimization of *in vitro* measurement of available iron from different fortificants in citric fruit juices. Food Chem. 2006;98:639–64.
- [8]. Nishikimi, M., Rao, N. A., and Yagi, K., The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and biophysical research communications, 1972, 46(2), 849-854.
- [9]. Zhao, G.R., Xiang, Z.J., Ye, T.X., Yuan, Y.J., and Guo, Z.X., Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chemistry, 2006, 99(4), 767-774.

