The Pharmaceutical and Chemical Journal, 2018, 5(6):126-140

Available online <u>www.tpcj.org</u>

Research Article

ISSN: 2349-7092 CODEN(USA): PCJHBA

Compared of Theoretical Properties of Novel 1-(Morpholine-4-yl-methyl)-3-(*p*-methoxybenzyl)-4-(4-isopropylbenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one According to Two Methods

Gül Kotan¹*, Haydar Yüksek²

¹Kafkas University, Kars Vocational School, Kars, Turkey ²Kafkas University, Department of Chemistry, Kars, Turkey

Abstract In this study, 1-(morpholine-4-yl-methyl)-3-(*p*-methoxybenzyl)-4-(4-isopropylbenzylidenamino)-4,5dihydro-1*H*-1,2,4-triazol-5-one molecule was optimized by using the B3LYP/HF 6-31G(d) and B3LYP/HF 6-311G(d) different two method. This optimized structure used to calculation of the various theoretical properties of the compounds. IR absorption frequencies of analyzed molecule were calculated by two methods. Then, they were compared with each other and experimental data, which are shown to be accurate. Infrared spectra were composed by using the data obtained from both methods. The veda4f program, was used in defining IR data, which were calculated theoretically. ¹H NMR and ¹³C NMR isotropic shift values were calculated by the method of GIAO using the program package Gaussian G09W. Experimental and theoretical values were inserted into the graphic according to equation $\delta \exp=a+b$. δ calc. The standard error values were found via Sigma Plot program with regression coefficient of a and b constants. Additionally, bond angles, bond lengths, mulliken charges, the HOMO-LUMO energy, E_{LUMO} - E_{HOMO} energy gap (ΔE_g), dipole moment, electronegativity (χ), electron affinity (A), global hardness (η), softness (S), ionization potential (I), chemical potential (Pi), electrophilic index(ω), Nucleophilic index (IP), total energy of the molecule and thermodynamic parameters of this compound was investigation by using the B3LYP/HF 6-31G(d) and B3LYP/HF 6-311G(d) basis sets.

Keyword: 1,2,4-Triazol-5-one, Veda4f, GIAO, HOMO-LUMO

1. Introduction

Schiff bases (-HC=N-) are well-known organic compounds that they are obtained by condensation between a primary amine and an aldehyde or ketone to form an azomethine or imine group [1]. These compounds are generally formed by reaction of an aldehyde with a primary amine, where R, may be an alkyl or an aryl group. Schiff bases that include aryl substituents are fundamentally more stable and more easily synthesized, while those which contain alkyl substituents are comparatively unstable. Many studies have lately been made using Schiff bases [2-8]. Schiff bases are inhibit as antifungal, antitumor and antibacterial agents and they have been used as pesticides, herbicides and insecticides, too [9, 10]. In the last year, theoretical properties of Schiff bases were investigated on a computer. In this study, we examined theoretical features of [2-Methoxy-4-(3-methyl-4,5-dihydro-1*H*-1,2,4-triazol-5-one-4-yl)-azomethinphenyl acetate molecule. All theoretical calculations for the target compound were with the Gaussian 09 quantum chemistry program [11] on a personal computer. For this, firstly, molecule were optimized by using the Density Functional Theory (DFT) and Hartree Fock (HF) methods with the restricted B3LYP [11, 12] level of theory, 6-31G(d) and 6-311G (d) basis sets, for all atoms. Optimized structure is the most stable structure of the

molecule. Then from this form, dipole moments, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), total energy of the molecule, bond lengths, bond angles and mulliken charges, electronic properties; $E_{LUMO}-E_{HOMO}$ energy gap (ΔEg), electronegativity (χ), electron affinity (A), global hardness (η), softness (σ), ionization potential (I), thermodynamics properties; (thermal energies (E), thermal capacity (CV), entropy (S) were calculated. In addition, The theoretical calculations ¹H-NMR and ¹³C-NMR were performed by using DFT/HF 6-31G(d) and DFT/HF 6-311G(d) level. ¹H-NMR and ¹³C-NMR isotropic shift values were calculated by the method of GIAO using the program package Gaussian G09 [12]. The visualization of all results has been performed using GaussView 5 [13]. Theoretical and experimental values were inserted into the graphic according to equation of $\delta \exp_a a+b$. δ calc. The standard error values were found via SigmaPlot program with regression coefficient of a and b constants. Finally, the theoretical vibrational spectra were calculated at the B3LYP/DFT/HF 6-31G(d) and 6-311G (d) basis sets in the gas phase and these data are scaled with 0.9613 and 0,8929 factors for 6-31G(d) basis set and 0.9905 and 0.9516 factors for 6-311G(d) basis set [14]. The data obtained according to DFT and HF method are formed using theoretical infrared spectrum. The veda4f program was used in defining IR data [15]. The experimental and theoretical IR spectra are given in Fig. 5, 6.

2. Materials and Methods

2.1 Experimental

Melting points were check on WRS-2A Microprocessor Melting-Point Apparatus. The IR spectra were measured on Alpha-P Bruker FT-IR Spectrometer. ¹H- and ¹³C-NMR spectra were recorded in deuterated dimethyl sulfoxide with TMS as internal standard on a Bruker 400 MHz spectrometer, respectively. Yield: 78%, m.p. 96 ⁰C. IR (υ , cm-1): 3035 (=CH), 1706 (C=O), 1608 (C=N), 1570 (C=C). ¹H-NMR (DMSO-d6): δ 1.22 (d, 6H, CH(CH₃)₂; J=6,80 Hz), 2.59-2.60 (m, 4H, CH₂NCH₂), 2.95 (hept, 1H, CH(CH₃)₂; J=6,80 Hz), 3.58 (m, 4H, CH₂OCH₂), 3.70 (s, 3H, OCH₃), 4.01(s, 2H, CH₂Ph, 4,56 (s, 2H, NCH₂N, 6.88; 7.25; 7.38; 7,73 (d, 2H, ArH; J=8.40 Hz), 9.65 (s, 1H, N=CH). ¹³C-NMR (DMSO-d₆): δ 23.52 (2CH3), 30.07 (CH₂Ph), 33.15 (CH), 50.01 (CH₂NCH₂), 55.01 (OCH₃), 66.04 (CH₂OCH₂+NCH₂N), 113.95; 126.99; 127.40; 127.89; 129.74; 131.04; 145.22; 158.15 (Arom-C), 150.32 (Triazole C3), 152.39 (Triazole C5) 154.24 (N=CH).

2.2 Theoretical

The quantum chemical calculations were carried out with density functional theory (DFT) and Hartree-Fock (HF) methods using 6-31G(d) and 6-311G(d) different two basis set at the Gaussian 09W program package on a computing system [11]. Firstly, the compound was optimized by using the B3LYP/6-31G (d) and HF/6-31G (d) basis sets [11,12]. Thus, the most stable geometrical conformer of compound was obtained. Then, ¹H-NMR and ¹³C-NMR isotropic shift values were calculated with method of GIAO [12]. The veda4f program was used in defining IR data [15]. Theoretically calculated IR data are multiplied with appropriate scale factors [14]. Scale dft and hf values obtained according to HF and DFT method are formed using theoretical infrared spectrum. Otherwise, bond angles, bond lengths, the HOMO-LUMO energy and mulliken charges of compound were calculated theoretically on the computer. The temperature addicted thermodynamic parameters (thermal energies **E**, thermal capacity **CV**, entropy **S**) were calculated from the vibrational frequency calculations of the title compound in the gas phase using the DFT/HF 6-31G(d) and 6-311G(d) level. In addition, $E_{LUMO}-E_{HOMO}$ energy gap (ΔEg), electronegativity (χ), electron affinity (A), global hardness (η), softness (S), ionization potential (I), chemical potential (Pi), electrophilic index (ω), Nucleophilic index (IP), total energy of the molecule, dipole moments were calculated.

3. Result and Discussion

Figure 1: The Gaussview structure of the molecule **Table 1:** ¹³C and ¹H-NMR (DMSO) isotropic chemical shifts (δ/ppm) (6-31G(d))

No	Exp.	B3LYP	Differ.	B3LYP	Differ.	HF	Differ.	HF	Differ.
C1	144.91	149.46	150.46	-4.55	-5.55	144.48	146.67	0.43	-1.76
C2	154.21	152.26	152.86	1.95	1.35	147.15	147.68	7.06	6.53
C3	152.39	154.54	155.44	-2.15	-3.05	148.87	149.88	3.52	2.51
C4	131.01	137.23	136.10	-6.22	-5.09	126.57	125.53	4.44	5.48
C5	127.89	128.23	127.64	-0.34	0.25	123.30	122.85	4.59	5.04
C6	126.99	128.62	129.24	-1.63	-2.25	123.38	123.44	3.61	3.55
C7	150.30	154.39	156.54	-4.09	-6.24	148.11	149.77	2.19	0.53
C8	126.99	131.66	132.17	-4.67	-5.18	120.69	121.07	6.30	5.92
С9	127.89	136.06	136.44	-8.17	-8.55	130.22	130.63	-2.33	-2.74
C10	33.45	47.66	47.50	-14.21	-14.05	29.47	29.23	3.98	4.22
C11	23.53	33.10	32.44	-9.57	-8.91	20.27	19.81	3.26	3.72
C12	23.53	32.90	32.66	-9.37	-9.13	20.27	19.81	3.26	3.72
C13	30.92	42.49	42.18	-11.57	-11.26	27.94	27.49	2.98	3.43
C14	135.65	140.47	140.64	-4.82	-4.99	130.02	130.35	5.63	5.30
C15	128.67	132.30	132.42	-3.63	-3.75	126.49	126.42	2.18	2.25
C16	128.49	131.27	131.74	-2.78	-3.25	124.57	124.81	3.92	3.68
C17	126.77	129.55	129.82	-2.78	-3.05	123.26	123.53	3.51	3.24
C18	128.49	131.38	131.47	-2.89	-2.98	124.62	124.86	3.87	3.63
C19	128.67	130.71	130.57	-2.04	-1.90	126.45	126.39	2.22	2.28
C20	66.03	74.30	74.05	-8.27	-8.02	56.28	56.12	9.75	9.91
C21	49.99	58.50	58.28	-8.51	-8.29	41.27	40.95	8.72	9.04
C22	66.03	73.89	73.73	-7.86	-7.70	55.76	55.61	10.27	10.42
C23	66.03	74.50	74.40	-8.47	-8.37	55.65	55.48	10.38	10.55
C24	49.99	59.16	58.86	-9.17	-8.87	40.74	40.48	9.25	9.51
H25	9.62	10.99	10.93	-1.37	-1.31	10.31	10.27	-0.69	-0.65
H26	7.72	9.14	9.16	-1.42	-1.44	8.89	8.95	-1.17	-1.23
H27	7.37	8.35	8.56	-0.98	-1.19	7.75	7.95	-0.38	-0.58
H28	7.37	8.01	8.20	-0.64	-0.83	7.90	8.11	-0.53	-0.74
H29	7.72	8.07	8.21	-0.35	-0.49	8.06	8.25	-0.34	-0.53

H30	2.95	3.58	3.72	-0.63	-0.77	2.76	2.92	0.19	0.03
H31	1.22	2.89	2.05	-1.67	-0.83	1.48	1.41	-0.26	-0.19
H32	1.22	2.11	2.19	-0.89	-0.97	1.49	1.56	-0.27	-0.34
H33	1.22	2.14	2.20	-0.92	-0.98	1.55	1.61	-0.33	-0.39
H34	1.22	2.06	2.01	-0.84	-0.79	1.49	1.42	-0.27	-0.20
H35	1.22	2.12	2.17	-0.90	-0.95	1.50	1.61	-0.28	-0.39
H36	1.22	2.09	2.16	-0.87	-0.94	1.48	1.56	-0.26	-0.34
H37	4.09	4.64	4.76	-0.55	-0.67	4.04	4.22	0.05	-0.13
H38	4.09	4.64	4.80	-0.55	-0.71	4.00	4.19	0.09	-0.10
H39	7.34	8.37	8.56	-1.03	-1.22	7.86	8.06	-0.52	-0.72
H40	7.32	8.25	8.43	-0.93	-1.11	7.92	8.11	-0.60	-0.79
H41	7.23	8.11	8.28	-0.88	-1.05	7.87	8.06	-0.64	-0.83
H42	7.32	8.20	8.34	-0.88	-1.02	7.94	8.12	-0.62	-0.80
H43	7.34	8.40	8.42	-1.06	-1.08	7.92	8.11	-0.58	-0.77
H44	4.57	4.63	4.79	-0.06	-0.22	3.93	4.04	0.64	0.53
H45	4.57	5.23	5.27	-0.66	-0.70	4.62	4.67	-0.05	-0.10
H46	2.59	3.81	3.80	-1.22	-1.21	2.52	2.46	0.07	0.13
H47	2.59	3.13	3.23	-0.54	-0.64	2.06	2.19	0.53	0.40
H48	3.56	4.34	4.57	-0.78	-1.01	3.55	3.65	0.01	-0.09
H49	3.56	4.48	4.35	-0.92	-0.79	3.29	3.30	0.27	0.26
H50	3.56	4.51	4.61	-0.95	-1.05	3.38	3.46	0.18	0.10
H51	3.56	4.51	4.49	-0.95	-0.93	3.64	3.72	-0.08	-0.16
H52	2.59	3.33	3.46	-0.74	-0.87	2.46	2.49	0.13	0.10
Н53	2.59	3.27	3.37	-0.68	-0.78	2.45	2.46	0.14	0.13
		12	1						
	Table	e 2: ¹³ C and	'H-NMR (I	DMSO) isotr	opic chemic	al shifts (δ/r	opm) (6-3110	G(d))	
No	Table Exp.	B3LYP	¹ H-NMR (I Differ.	DMSO) isotr B3LYP	opic chemic Differ.	al shifts (δ/μ HF	opm) (6-3110 Differ.	G(d)) HF	Differ.
No C1	Exp. 144.91	e 2: ¹³ C and B3LYP 149.46	¹ H-NMR (I Differ. 150.46	DMSO) isotr B3LYP -4.55	opic chemic Differ. -5.55	cal shifts (δ/μ HF 144.48	opm) (6-3110 Differ. 146.67	$\frac{\mathrm{G}(\mathrm{d}))}{\mathrm{HF}}$	Differ. -1.76
No C1 C2	Exp. 144.91 154.21	e 2: ¹³ C and B3LYP 149.46 152.26	¹ H-NMR (I Differ. 150.46 152.86	DMSO) isotr B3LYP -4.55 1.95	opic chemic Differ. -5.55 1.35	eal shifts (δ/ <u>p</u> HF 144.48 147.15	opm) (6-3110 Differ. 146.67 147.68	G(d)) HF 0.43 7.06	Differ. -1.76 6.53
No C1 C2 C3	Table Exp. 144.91 154.21 152.39	e 2: ¹³ C and B3LYP 149.46 152.26 154.54	¹ H-NMR (I Differ. 150.46 152.86 155.44	DMSO) isotr B3LYP -4.55 1.95 -2.15	Differ. -5.55 1.35 -3.05	eal shifts (δ/μ HF 144.48 147.15 148.87	opm) (6-3110 Differ. 146.67 147.68 149.88	G(d)) HF 0.43 7.06 3.52	Differ. -1.76 6.53 2.51
No C1 C2 C3 C4	Table Exp. 144.91 154.21 152.39 131.01	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22	opic chemic Differ. -5.55 1.35 -3.05 -5.09	<u>HF</u> 144.48 147.15 148.87 126.57	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53	G(d)) HF 0.43 7.06 3.52 4.44	Differ. -1.76 6.53 2.51 5.48
No C1 C2 C3 C4 C5	Table Exp. 144.91 154.21 152.39 131.01 127.89	B3LYP 149.46 152.26 154.54 137.23 128.23	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25	cal shifts (δ/μ) HF 144.48 147.15 148.87 126.57 123.30	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85	G(d)) HF 0.43 7.06 3.52 4.44 4.59	Differ. -1.76 6.53 2.51 5.48 5.04
No C1 C2 C3 C4 C5 C6	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.62	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25	ial shifts (δ/ <u>μ</u> HF 144.48 147.15 148.87 126.57 123.30 123.38	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61	Differ. -1.76 6.53 2.51 5.48 5.04 3.55
No C1 C2 C3 C4 C5 C6 C7	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.23 128.62 154.39	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24	ial shifts (δ/μ HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53
No C1 C2 C3 C4 C5 C6 C7 C8	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30 126.99	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.62 154.39 131.66	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54 132.17	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09 -4.67	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24 -5.18	cal shifts (δ/μ HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11 120.69	Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77 121.07	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19 6.30	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53 5.92
No C1 C2 C3 C4 C5 C6 C7 C8 C9	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30 126.99 127.89	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.62 154.39 131.66 136.06	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54 132.17 136.44	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09 -4.67 -8.17	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24 -5.18 -8.55	ial shifts (δ/μ HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11 120.69 130.22	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77 121.07 130.63	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19 6.30 -2.33	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53 5.92 -2.74
No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30 126.99 127.89 33.45	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.62 154.39 131.66 136.06 47.66	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54 132.17 136.44 47.50	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09 -4.67 -8.17 -14.21	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24 -5.18 -8.55 -14.05	ial shifts (δ/ <u>μ</u> HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11 120.69 130.22 29.47	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77 121.07 130.63 29.23	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19 6.30 -2.33 3.98	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53 5.92 -2.74 4.22
No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30 126.99 30.126.99 33.45 23.53	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.62 154.39 131.66 136.06 47.66 33.10	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54 132.17 136.44 47.50 32.44	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09 -4.67 -8.17 -14.21 -9.57	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24 -5.18 -8.55 -14.05 -8.91	ial shifts (δ/μ HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11 120.69 130.22 29.47 20.27	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77 121.07 130.63 29.23 19.81	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19 6.30 -2.33 3.98 3.26	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53 5.92 -2.74 4.22 3.72
No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30 126.99 127.89 33.45 23.53	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.62 154.39 131.66 136.06 47.66 33.10 32.90	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54 132.17 136.44 47.50 32.44 32.66	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09 -4.67 -8.17 -14.21 -9.57 -9.37	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24 -5.18 -8.55 -14.05 -8.91 -9.13	Eal shifts (δ/μ HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11 120.69 130.22 29.47 20.27 20.27	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77 121.07 130.63 29.23 19.81 19.81	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19 6.30 -2.33 3.98 3.26 3.26 3.26	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53 5.92 -2.74 4.22 3.72 3.72 3.72
No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30 126.99 127.89 33.45 23.53 23.53 30.92	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.62 154.39 131.66 136.06 47.66 33.10 32.90 42.49	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54 132.17 136.44 47.50 32.44 32.66 42.18	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09 -4.67 -8.17 -14.21 -9.57 -9.37 -11.57	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24 -5.18 -8.55 -14.05 -8.91 -9.13 -11.26	Eal shifts (δ/μ HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11 120.69 130.22 29.47 20.27 20.27 27.94	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77 121.07 130.63 29.23 19.81 19.81 27.49	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19 6.30 -2.33 3.98 3.26 3.26 3.26 2.98	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53 5.92 -2.74 4.22 3.72 3.72 3.43
No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30 126.99 127.89 33.45 23.53 30.92 135.65	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.23 128.62 154.39 131.66 136.06 47.66 33.10 32.90 42.49 140.47	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54 132.17 136.44 47.50 32.44 32.66 42.18 140.64	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09 -4.67 -8.17 -14.21 -9.57 -9.37 -11.57 -4.82	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24 -5.18 -8.55 -14.05 -8.91 -9.13 -11.26 -4.99	Eal shifts (δ/μ HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11 120.69 130.22 29.47 20.27 27.94 130.02	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77 121.07 130.63 29.23 19.81 19.81 19.81 27.49 130.35	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19 6.30 -2.33 3.98 3.26 3.26 2.98 5.63	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53 5.92 -2.74 4.22 3.72 3.72 3.43 5.30
No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30 126.99 127.89 33.45 23.53 30.92 135.65 128.67	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.62 154.39 131.66 136.06 47.66 33.10 32.90 42.49 140.47 132.30	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54 132.17 136.44 47.50 32.44 32.66 42.18 140.64 132.42	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09 -4.67 -8.17 -14.21 -9.57 -9.37 -11.57 -4.82 -3.63	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24 -5.18 -8.55 -14.05 -9.13 -11.26 -4.99 -3.75	Eal shifts (δ/μ HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11 120.69 130.22 29.47 20.27 27.94 130.02 126.49	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77 121.07 130.63 29.23 19.81 19.81 27.49 130.35 126.42	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19 6.30 -2.33 3.98 3.26 3.26 2.98 5.63 2.18	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53 5.92 -2.74 4.22 3.72 3.72 3.72 3.43 5.30 2.25
No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30 126.99 127.89 33.45 23.53 23.53 30.92 135.65 128.67 128.49	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.62 154.39 131.66 136.06 47.66 33.10 32.90 42.49 140.47 132.30 131.27	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54 132.17 136.44 47.50 32.44 32.66 42.18 140.64 132.42 131.74	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09 -4.67 -8.17 -14.21 -9.57 -9.37 -11.57 -4.82 -3.63 -2.78	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24 -5.18 -8.55 -14.05 -8.91 -9.13 -11.26 -4.99 -3.75 -3.25	Eal shifts (δ/μ HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11 120.69 130.22 29.47 20.27 27.94 130.02 126.49 124.57	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77 121.07 130.63 29.23 19.81 19.81 27.49 130.35 126.42 124.81	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19 6.30 -2.33 3.98 3.26 3.26 3.26 2.98 5.63 2.18 3.92	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53 5.92 -2.74 4.22 3.72 3.72 3.72 3.43 5.30 2.25 3.68
No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30 126.99 127.89 33.45 23.53 30.92 135.65 128.67 128.49 126.77	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.62 154.39 131.66 136.06 47.66 33.10 32.90 42.49 140.47 132.30 131.27 129.55	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54 132.17 136.44 47.50 32.44 32.66 42.18 140.64 132.42 131.74 129.82	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09 -4.67 -8.17 -14.21 -9.57 -9.57 -9.37 -11.57 -4.82 -3.63 -2.78 -2.78 -2.78	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24 -5.18 -8.55 -14.05 -8.91 -9.13 -11.26 -4.99 -3.75 -3.25 -3.05	Eal shifts (δ/μ HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11 120.69 130.22 29.47 20.27 27.94 130.02 126.49 124.57 123.26	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77 121.07 130.63 29.23 19.81 19.81 27.49 130.35 126.42 124.81 123.53	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19 6.30 -2.33 3.98 3.26 3.26 2.98 5.63 2.18 3.92 3.51	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53 5.92 -2.74 4.22 3.72 3.72 3.72 3.43 5.30 2.25 3.68 3.24
No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30 126.99 127.89 33.45 23.53 30.92 135.65 128.49 126.77 128.49	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.23 128.62 154.39 131.66 136.06 47.66 33.10 32.90 42.49 140.47 132.30 131.27 129.55 131.38	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54 132.17 136.44 47.50 32.44 32.66 42.18 140.64 132.42 131.74 129.82 131.47	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09 -4.67 -8.17 -14.21 -9.57 -9.37 -11.57 -4.82 -3.63 -2.78 -2.78 -2.89	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24 -5.18 -8.55 -14.05 -8.91 -9.13 -11.26 -4.99 -3.75 -3.25 -3.05 -2.98	Eal shifts (δ/μ HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11 120.69 130.22 29.47 20.27 27.94 130.02 126.49 124.57 123.26 124.62	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77 121.07 130.63 29.23 19.81 19.81 27.49 130.35 126.42 124.81 123.53 124.86	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19 6.30 -2.33 3.98 3.26 3.26 2.98 5.63 2.18 3.92 3.51 3.87	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53 5.92 -2.74 4.22 3.72 3.72 3.43 5.30 2.25 3.68 3.24 3.63
No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30 126.99 150.30 126.99 13.45 23.53 23.53 30.92 135.65 128.67 128.49 128.67	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.62 154.39 131.66 136.06 47.66 33.10 32.90 42.49 140.47 132.30 131.27 129.55 131.38 130.71	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54 132.17 136.44 47.50 32.44 32.66 42.18 140.64 132.42 131.74 129.82 131.47 130.57	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09 -4.67 -8.17 -14.21 -9.57 -9.37 -11.57 -4.82 -3.63 -2.78 -2.78 -2.89 -2.04	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24 -5.18 -8.55 -14.05 -8.91 -9.13 -11.26 -4.99 -3.75 -3.05 -2.98 -1.90	Eal shifts (δ/μ HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11 120.69 130.22 29.47 20.27 27.94 130.02 126.49 124.57 123.26 124.62 126.45	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77 121.07 130.63 29.23 19.81 19.81 27.49 130.35 126.42 124.81 123.53 124.86 126.39	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19 6.30 -2.33 3.98 3.26 3.26 3.26 2.98 5.63 2.18 3.92 3.51 3.87 2.22	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53 5.92 -2.74 4.22 3.72 3.72 3.72 3.43 5.30 2.25 3.68 3.24 3.63 2.28
No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30 126.99 150.30 126.99 150.30 126.99 150.30 126.99 127.89 33.45 23.53 30.92 135.65 128.67 128.49 128.67 66.03	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.23 128.62 154.39 131.66 136.06 47.66 33.10 32.90 42.49 140.47 132.30 131.27 129.55 131.38 130.71 74.30	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54 132.17 136.44 47.50 32.44 32.66 42.18 140.64 132.42 131.74 129.82 131.47 130.57 74.05	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09 -4.67 -8.17 -14.21 -9.57 -9.37 -11.57 -4.82 -3.63 -2.78 -2.78 -2.89 -2.04 -8.27	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24 -5.18 -8.55 -14.05 -8.91 -9.13 -11.26 -4.99 -3.75 -3.05 -2.98 -1.90 -8.02	Eal shifts (δ/μ HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11 120.69 130.22 29.47 20.27 27.94 130.02 126.49 124.57 123.26 124.62 126.45 56.28	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77 121.07 130.63 29.23 19.81 19.81 27.49 130.35 126.42 124.81 123.53 124.86 126.39 56.12	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19 6.30 -2.33 3.98 3.26 3.26 2.98 5.63 2.18 3.92 3.51 3.87 2.22 9.75	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53 5.92 -2.74 4.22 3.72 3.72 3.72 3.43 5.30 2.25 3.68 3.24 3.63 2.28 9.91
No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30 126.99 127.89 33.45 23.53 30.92 135.65 128.49 126.77 128.49 126.77 128.49 126.77 128.49 126.77 128.49 126.77 128.49 128.67 66.03 49.99	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.23 128.62 154.39 131.66 136.06 47.66 33.10 32.90 42.49 140.47 132.30 131.27 129.55 131.38 130.71 74.30 58.50	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54 132.17 136.44 47.50 32.44 32.66 42.18 140.64 132.42 131.74 129.82 131.47 130.57 74.05 58.28	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09 -4.67 -8.17 -14.21 -9.57 -9.57 -9.37 -11.57 -4.82 -3.63 -2.78 -2.89 -2.04 -8.27 -8.51	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24 -5.18 -8.55 -14.05 -8.91 -9.13 -11.26 -4.99 -3.75 -3.05 -2.98 -1.90 -8.02 -8.29	Eal shifts (δ/μ HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11 120.69 130.22 29.47 20.27 27.94 130.02 126.49 124.57 123.26 124.62 126.45 56.28 41.27	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77 121.07 130.63 29.23 19.81 19.81 27.49 130.35 126.42 124.81 123.53 124.86 126.39 56.12 40.95	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19 6.30 -2.33 3.98 3.26 2.98 5.63 2.18 3.92 3.51 3.87 2.22 9.75 8.72	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53 5.92 -2.74 4.22 3.72 3.72 3.43 5.30 2.25 3.68 3.24 3.63 2.28 9.91 9.04
No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22	Table Exp. 144.91 154.21 152.39 131.01 127.89 126.99 150.30 126.99 127.89 33.45 23.53 30.92 135.65 128.67 128.49 126.77 128.49 126.77 66.03 49.99 66.03	e 2: ¹³ C and B3LYP 149.46 152.26 154.54 137.23 128.23 128.62 154.39 131.66 136.06 47.66 33.10 32.90 42.49 140.47 132.30 131.27 129.55 131.38 130.71 74.30 58.50 73.89	¹ H-NMR (I Differ. 150.46 152.86 155.44 136.10 127.64 129.24 156.54 132.17 136.44 47.50 32.44 32.66 42.18 140.64 132.42 131.74 129.82 131.47 130.57 74.05 58.28 73.73	DMSO) isotr B3LYP -4.55 1.95 -2.15 -6.22 -0.34 -1.63 -4.09 -4.67 -8.17 -14.21 -9.57 -9.37 -11.57 -4.82 -3.63 -2.78 -2.78 -2.78 -2.89 -2.04 -8.27 -8.51 -7.86	opic chemic Differ. -5.55 1.35 -3.05 -5.09 0.25 -2.25 -6.24 -5.18 -8.55 -14.05 -8.91 -9.13 -11.26 -4.99 -3.75 -3.25 -3.05 -2.98 -1.90 -8.02 -8.29 -7.70	Eal shifts (δ/μ HF 144.48 147.15 148.87 126.57 123.30 123.38 148.11 120.69 130.22 29.47 20.27 27.94 130.02 126.49 124.57 123.26 124.62 126.45 56.28 41.27 55.76	ppm) (6-3110 Differ. 146.67 147.68 149.88 125.53 122.85 123.44 149.77 121.07 130.63 29.23 19.81 19.81 27.49 130.35 126.42 124.81 123.53 124.86 126.39 56.12 40.95 55.61	G(d)) HF 0.43 7.06 3.52 4.44 4.59 3.61 2.19 6.30 -2.33 3.98 3.26 3.98 3.26 2.98 5.63 2.18 3.92 3.51 3.87 2.22 9.75 8.72 10.27	Differ. -1.76 6.53 2.51 5.48 5.04 3.55 0.53 5.92 -2.74 4.22 3.72 3.72 3.43 5.30 2.25 3.68 3.24 3.63 2.28 9.91 9.04 10.42

Kotan G & Yüksek HThe Pharmaceutical and Chemical Journal, 2018, 5(6):126-1-					5):126-140				
C23	66.03	74.50	74.40	-8.47	-8.37	55.65	55.48	10.38	10.55
C24	49.99	59.16	58.86	-9.17	-8.87	40.74	40.48	9.25	9.51
H25	9.62	10.99	10.93	-1.37	-1.31	10.31	10.27	-0.69	-0.65
H26	7.72	9.14	9.16	-1.42	-1.44	8.89	8.95	-1.17	-1.23
H27	7.37	8.35	8.56	-0.98	-1.19	7.75	7.95	-0.38	-0.58
H28	7.37	8.01	8.20	-0.64	-0.83	7.90	8.11	-0.53	-0.74
H29	7.72	8.07	8.21	-0.35	-0.49	8.06	8.25	-0.34	-0.53
H30	2.95	3.58	3.72	-0.63	-0.77	2.76	2.92	0.19	0.03
H31	1.22	2.89	2.05	-1.67	-0.83	1.48	1.41	-0.26	-0.19
H32	1.22	2.11	2.19	-0.89	-0.97	1.49	1.56	-0.27	-0.34
H33	1.22	2.14	2.20	-0.92	-0.98	1.55	1.61	-0.33	-0.39
H34	1.22	2.06	2.01	-0.84	-0.79	1.49	1.42	-0.27	-0.20
H35	1.22	2.12	2.17	-0.90	-0.95	1.50	1.61	-0.28	-0.39
H36	1.22	2.09	2.16	-0.87	-0.94	1.48	1.56	-0.26	-0.34
H37	4.09	4.64	4.76	-0.55	-0.67	4.04	4.22	0.05	-0.13
H38	4.09	4.64	4.80	-0.55	-0.71	4.00	4.19	0.09	-0.10
H39	7.34	8.37	8.56	-1.03	-1.22	7.86	8.06	-0.52	-0.72
H40	7.32	8.25	8.43	-0.93	-1.11	7.92	8.11	-0.60	-0.79
H41	7.23	8.11	8.28	-0.88	-1.05	7.87	8.06	-0.64	-0.83
H42	7.32	8.20	8.34	-0.88	-1.02	7.94	8.12	-0.62	-0.80
H43	7.34	8.40	8.42	-1.06	-1.08	7.92	8.11	-0.58	-0.77
H44	4.57	4.63	4.79	-0.06	-0.22	3.93	4.04	0.64	0.53
H45	4.57	5.23	5.27	-0.66	-0.70	4.62	4.67	-0.05	-0.10
H46	2.59	3.81	3.80	-1.22	-1.21	2.52	2.46	0.07	0.13
H47	2.59	3.13	3.23	-0.54	-0.64	2.06	2.19	0.53	0.40
H48	3.56	4.34	4.57	-0.78	-1.01	3.55	3.65	0.01	-0.09
H49	3.56	4.48	4.35	-0.92	-0.79	3.29	3.30	0.27	0.26
H50	3.56	4.51	4.61	-0.95	-1.05	3.38	3.46	0.18	0.10
H51	3.56	4.51	4.49	-0.95	-0.93	3.64	3.72	-0.08	-0.16
H52	2.59	3.33	3.46	-0.74	-0.87	2.46	2.49	0.13	0.10
H53	2.59	3.27	3.37	-0.68	-0.78	2.45	2.46	0.14	0.13

The Pharmaceutical and Chemical Journal, 2018, 5(6):126-140

3.2. The relation between \mathbf{R}^2 values of the compound

The optimized R² values of the compound: B3LYP/631G(d) (DMSO): ¹³C: 0.9815, ¹H: 0.9807; HF/631G(d,p) (DMSO): ¹³C: 0.9915, ¹H: 0.9807

The optimized **R**² values of the compound: B3LYP/6311G(d) (DMSO): ¹³C: 0.9891, ¹H: 0.9902; HF/6311G(d,p) (DMSO): ¹³C: 0.9906, ¹H: 0.9798. There is such a relationship between R²-values of the compound. Found standard error rate and a, b constants regression values were calculated according to formula exp = a + b. δ calc Eq. These values for compound were given in the table 3. Theoretical and experimental carbon and proton chemical shifts ratios between according to R^2 and a, b values, linear a correlation were observed.

	$\frac{^{13}\text{C}}{\text{P} + \frac{1}{2}}$					¹ H			
		R	S. hata	a	b	R	S. hata	a	b
6-31G	DFT	0.9815	6.4084	1.0546	-12.191	0.9807	0.3357	0.9234	0.5884
	HF	0.9915	4.3428	0.9823	5.5069	0.9807	0.3357	0.9234	0.5884
6-311G	DFT	0.9891	4.9084	0.9849	-12.574	0.9902	0.2386	0.9909	-0.3745
	HF	0.9906	4.5536	0.9241	0.9301	0.9798	0.3432	0.9457	0.3929

Table 3: The correlation data for chemical shifts of the molecules

Figure 4: The correlation graphs for B3LYP/HF 6311G(d) chemical shifts of the molecule

3.3. The vibration frequency of the compound

Theoretically IR values were calculation veda 4f programme and scale values were obtain. Theoretically calculated IR data are multiplied with appropriate scale factors respectively 0.9613, 0.8929 for DFT/HF 631G (d) and 0.9905, 0.9516 factors for DFT/HF6311G (d) basis sets. The positive frequency in the data was found. IR spectrums were drawn with obtained values according to HF and DFT method. Theoretically IR values were compare with experimentally IR values. The result of this compare were found corresponding with each other of values.

Table 4: Significant vibrational frequencies (cm ⁻¹)									
Significant	Experimental	B3LYP/HI	F 6-31G(d)	B3LYP/HF 6-311G(d)					
vibrational frequencies	IR (cm ⁻¹)	Skalalı DFT	Skalalı HF	Skalalı DFT	Skalalı HF				
v C=C	1570	1593	1620	1596	1605				
v C=N	1608	1614	1704	1628	1697				
v C=O	1706	1768	1712	1768	1726				
v = CH	3035	3091	3039	3162	3218				
66 70 75 80 85 90 95	2. W				MM v.				
	23943.63 23943.64 23945.64 23955.64 239	16,000,000 1558,43 1558,43 1458,69 1446,69 1447,00 1447,00 1447,00 1447,00 1447,00 1358,24 1447,00 1359,24 1350,24 140,24140,24 140,24 140,24 140,	11148.59 111186.54 111186.54 1008.55 1009.55 1	88224	887.00 460.06 40.19 387.06 387.06				
	3500 3000 2	2000	1500	1000	500				
		Elever F. E							

Figure 5: Experimental IR spectrum

B3LYP/DFT/HF 6311G(d) levels of the molecule

3.4 Molecular Geometry

The molecular geometric parameters such as bond lengths, bond angles, Mulliken atomic charges calculated by using the HF and DFT/B3LYP methods with 6-31G(d) basis set obtained data are precondition in Table 5-7. According to this result, the longest bond length is between C10-C11 and C10-C12 atoms that this values are 1.54/1.53 Å for DFT/HF 6-31G(d) and 1.53/1.53 Å for DFT/HF 6-311G(d). Besides, respectively, the bond lengths in the triazole ring N57-N58, N57-C1, C2-O62, C2-N59, N59-C1, N58-C2 are calculated 1.38/1.37, 1.30/1.26, 1.22/1.20, 1.41/1.38, 1.38/1.37, 1.37/1.35 Å for DFT/HF 6-31G(d) and 1.38/1.37, 1.29/1.26, 1.21/1.19, 1.41/1.38, 1.38/1.37, 1.37/1.34 Å for DFT/HF 6-311G(d) basis sets (table 5). In the literature, the N=C, N-N, C=O bond lengths are measured as 1.280, 1.404, 1.212 Å [16, 17]. The highest bond angle is between C(2)-N(59)-O(60) atoms, which is 130.49/129.34^{0°} (table 6). The calculated Mulliken atomic charges [18] calculated by using the Hartree Fock (HF) and DFT/B3LYP methods with 6-31G(d) and 6-311G(d) basis sets. The electronegative oxygen (O) and nitrogen (N) atoms have negative atomic charge values. The carbon atoms surrounded by electronegative atoms have positive atoms (N58, N59, O62) have the highest positive charges values. All hydrogen atoms of the compound (**3**) have positive atomic charge values (table 7).

	Table 5. The	e calculated	a bolia leng	uis witti D5		(u) / 0 - 3110	J(u) of the	molecule	
bond	DFT 6-	HF 6-	DFT6-	HF6-	bond	DFT6-	HF6-	DFT6-	HF6-
lengths	31	31	311	311	lengths	31	31	311	311
C(1)-C(13)	1.49	1.49	1.494	1.496	C(7)-C(8)	1.39	1.38	1.396	1.384
C(1)-N(57)	1.30	1.26	1.297	1.267	C(8)-H(29)	1.08	1.07	1.086	1.075
C(1)-N(59)	1.38	1.37	1.386	1.375	C(8)-C(9)	1.39	1.38	1.391	1.387
N(57)-N(58)	1.38	1.37	1.383	1.372	C(9)-H(30)	1.08	1.07	1.086	1.076
N(58)-C(2)	1.37	1.35	1.372	1.349	C(4)-C(9)	1.40	1.38	1.399	1.384

Table 5: The calculated bond lengths with B3LYP/HF 631G(d) /6-311G(d) of the molecule

	C(2)-N(59) 1.	.41	1.38	1.417	1.387	C(7)-C(10)	1.52	1.52	1.520	1.520
	C(2)-O(62) 1.	.22	1.20	1.217	1.197	C(10)-H(31)	1.09	1.08	1.096	1.086
	N(59)-N(60) 1.	.37	1.36	1.371	1.366	C(10)-C(11)	1.54	1.53	1.539	1.533
	C(13)-H(38) 1.	.09	1.08	1.093	1.082	C(11)-H(32)	1.09	1.08	1.092	1.084
	C(13)-H(39) 1.	.09	1.08	1.091	1.081	C(11)-H(33)	1.09	1.08	1.093	1.085
	C(13)-C(14) 1.	.52	1.51	1.521	1.519	C(11)-H(34)	1.09	1.08	1.094	1.085
	C(14)-C(15) 1.	.39	1.37	1.391	1.378	C(10)-C(12)	1.54	1.53	1.538	1.534
	C(15)-H(40) 1.	.08	1.07	1.085	1.075	C(12)-H(35)	1.09	1.08	1.092	1.085
	C(15)-C(16) 1.	.39	1.39	1.396	1.392	C(12)-H(36)	1.09	1.08	1.094	1.085
	C(16)-C(17) 1.	.39	1.38	1.395	1.382	C(12)-H(37)	1.09	1.08	1.093	1.084
	C(16)-H(41) 1.	.08	1.07	1.082	1.072	N(58)-C(21)	1.44	1.43	1.448	1.438
	C(17)-O(63) 1.	.36	1.34	1.363	1.346	C(21)-H(47)	1.10	1.08	1.099	1.079
	O(63)-C(20) 1.	.41	1.39	1.418	1.397	C(21)-H(48)	1.09	1.07	1.090	1.087
	H(44)-C(20) 1.	.09	1.07	1.095	1.084	C(21)-N(61)	1.45	1.44	1.450	1.440
	H(45)-C(20) 1.	.09	1.08	1.095	1.084	N(61)-C(22)	1.46	1.45	1.463	1.452
	H(46)-C(20) 1.	.09	1.08	1.088	1.078	C(22)-H(49)	1.09	1.04	1.106	1.084
	C(17)-C(18) 1.	.40	1.39	1.401	1.394	C(22)-H(50)	1.10	1.08	1.094	1.094
	C(18)-H(42) 1.	.08	1.07	1.084	1.074	C(22)-C(23)	1.52	1.52	1.525	1.518
	C(18)-C(19) 1.	.38	1.37	1.384	1.373	C(23)-H(51)	1.10	1.08	1.100	1.088
	C(19)-H(43) 1.	.08	1.07	1.085	1.075	C(23)-H(52)	1.09	1.08	1.091	1.081
	N(60)-C(3) 1.	.28	1.26	1.285	1.257	C(23)-O(64)	1.42	1.39	1.420	1.397
	C(3)-H(26) 1.	.08	1.07	1.086	1.074	O(64)-C(24)	1.42	1.40	1.422	1.398
	C(3)-C(4) 1.	.46	1.47	1.463	1.474	C(24)-H(53)	1.09	1.08	1.091	1.088
	C(4)-C(5) 1.	.40	1.39	1.404	1.394	C(24)-H(54)	1.10	1.08	1.100	1.081
	C(5)-H(27) 1.	.08	1.07	1.083	1.073	C(24)-C(25)	1.52	1.51	1.523	1.517
	C(5)-C(6) 1.	.38	1.37	1.385	1.376	C(25)-H(55)	1.10	1.09	1.106	1.094
						- (-) ()				
	C(6)-H(28) 1.	.08	1.07	1.085	1.075	C(25)-H(56)	1.09	1.08	1.092	1.081
_	C(6)-H(28) 1. C(6)-C(7) 1.	.08 .40	1.07 1.39	1.085 1.404	1.075 1.397	C(25)-H(56) C(25)-N(61)	1.09 1.46	1.08 1.45	1.092 1.465	1.081 1.454
	C(6)-H(28) 1. C(6)-C(7) 1. Table	.08 .40 e 6: The c	1.07 1.39 alculated b	1.085 1.404 ond angles	1.075 1.397 with B31	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ (1.09 1.46 6-311G(d)	1.08 1.45 of the mo	1.092 1.465 lecule	1.081 1.454
	C(6)-H(28) 1. C(6)-C(7) 1. Bond Angles	.08 .40 e 6: The c B3LYP	1.07 1.39 alculated b HF 6-31	1.085 1.404 ond angles B3LYP	1.075 1.397 with B31 HF	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ (Bond Angles	1.09 1.46 6-311G(d) B3LYP	1.08 1.45 of the mo HF6-31	1.092 1.465 lecule B3LYP	1.081 1.454 HF
_	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles	.08 .40 e 6: The c B3LYP 6-31	1.07 1.39 alculated b HF 6-31	1.085 1.404 ond angles B3LYP 6-311	1.075 1.397 with B31 HF 6-311	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ (Bond Angles	1.09 1.46 6-311G(d) B3LYP 6-31	1.08 1.45 0 of the mo HF6-31	1.092 1.465 lecule B3LYP 6-311	1.081 1.454 HF 6-311
	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59)	.08 .40 6: The c B3LYP 6-31 111.35	1.07 1.39 alculated b HF 6-31 111.23	1.085 1.404 ond angles B3LYP 6-311 111.29	1.075 1.397 with B31 HF 6-311 111.22	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ 0 Bond Angles H(28)-C(6)-C(7)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58	1.08 1.45 0 of the mo HF6-31 119.83	1.092 1.465 lecule B3LYP 6-311 119.72	1.081 1.454 HF 6-311 119.88
	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2)	.08 .40 6: The c B3LYP 6-31 111.35 113.22	1.07 1.39 alculated b HF 6-31 111.23 112.55	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14	1.075 1.397 with B31 HF 6-311 111.22 112.54	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8)	1.09 1.46 5-311G(d) B3LYP 6-31 120.58 117.82	1.08 1.45 of the mo HF6-31 119.83 117.86	1.092 1.465 lecule B3LYP 6-311 119.72 117.75	1.081 1.454 HF 6-311 119.88 117.79
	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(21)	.08 .40 6: The c B3LYP 6-31 111.35 113.22 122.06	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08	1.075 1.397 with B31 HF 6-311 111.22 112.54 122.24	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29)	1.09 1.46 5-311G(d) B3LYP 6-31 120.58 117.82 119.38	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71	1.092 1.465 decule B3LYP 6-311 119.72 117.75 119.43	1.081 1.454 HF 6-311 119.88 117.79 119.75
	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(21) C(21)-N(58)-C(2)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48	1.075 1.397 with B3J HF 6-311 111.22 112.54 122.24 125.06	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ (Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(7)-C(8)-C(9)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18	1.08 1.45 of the mo HF6-31 119.83 117.86 119.71 121.07	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 110 70	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10
	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(21) C(21)-N(58)-C(2) N(58)-C(2)-O(62) N(58)-C(2)-O(62)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.90	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19	1.075 1.397 with B31 HF 6-311 111.22 112.54 122.24 125.06 128.98 128.98	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ (Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(8)-C(9)-H(30)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39
	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(21) C(21)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.90 128.38 128.24	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 120.24	1.075 1.397 with B31 HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 120.20	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ (Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(8)-C(9)-H(30) C(8)-C(9)-C(4)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.00	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77
	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)-N(60) C(2)-N(59)-N(60)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88 130.49	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.90 128.38 130.34 120.20	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 130.34 121.51	1.075 1.397 with B3I HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 130.38 121.45	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ 0 Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(8)-C(9)-C(4) C(7)-C(10)-C(11)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71 111.86	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75 111.87	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.89 111.89	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77 111.90
_	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)-N(60) C(1)-N(59)-N(60) N(57)-C(1)-C(1)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88 130.49 121.35	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.90 128.38 130.34 121.38 120.4 (2)	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 130.34 121.54	1.075 1.397 with B3I HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 130.38 121.45	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(8)-C(9)-C(4) C(7)-C(10)-C(11) C(7)-C(10)-C(12)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71 111.86 111.80 107.01	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75 111.87 111.87	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.89 111.85 106.04	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77 111.90 111.89 106.02
_	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)-N(60) C(1)-N(59)-N(60) N(57)-C(1)-C(13) N(57)-C(1)-C(13)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88 130.49 121.35 124.47	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.90 128.38 130.34 121.38 124.62 124.62	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 130.34 121.54 124.60 124.06	1.075 1.397 with B3I HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 130.38 121.45 124.64 124.64	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(8)-C(9)-C(4) C(7)-C(10)-C(11) C(7)-C(10)-C(12) C(7)-C(10)-H(31)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71 111.86 111.80 107.01	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75 111.87 111.87 111.87 106.97	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.89 111.85 106.94 107.24	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77 111.89 106.93 107.20
_	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)-N(60) C(1)-N(59)-N(60) N(57)-C(1)-C(13) N(59)-C(1)-C(13) C(1)-C(12) C(2)-C(1)-C(13) C(1)-C(12) C(2)-C(1)-C(13) C(1)-C(12) C(2)-C(1)-C(13) C(1)-C(12) C(2)-C(1)-C(13) C(1)-C(12) C(2)-C(1)-C(13) C(1)-C(12) C(2)-C(1)-C(13) C(1)-C(1)-C(13) C(1)-C(1)-C(13) C(1)-C(1)-C(13) C(1)-C(1)-C(13) C(1)-C(1)-C(13) C(1)-C(1)-C(13) C(1)-C(1)-C(13) C(1)-C(1)-C(13) C(1)-C(1)-C(1)-C(13) C(1)-C(1)-C(1)-C(13) C(1)-C(1)-C(1)-C(1)-C(13) C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88 130.49 121.35 124.47 124.13 106.25	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.90 128.38 130.34 121.38 124.62 124.09 106.20	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 130.34 121.54 124.60 124.06 106.57	1.075 1.397 with B3I HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 130.38 121.45 124.64 124.09	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ 0 Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(8)-C(9)-C(4) C(7)-C(10)-C(11) C(7)-C(10)-C(12) C(7)-C(10)-H(31) H(31)-C(10)-C(11)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71 111.86 111.80 107.40 111.24	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75 111.87 111.87 111.87 106.97 107.32	1.092 1.465 decule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.89 111.85 106.94 107.34 111.22	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77 111.90 111.89 106.93 107.29
	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)-N(60) C(1)-N(59)-N(60) N(57)-C(1)-C(13) N(59)-C(1)-C(13) C(1)-C(13)-H(38) C(1)-C(13)-H(38)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88 130.49 121.35 124.47 124.13 106.25 100.05	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.90 128.38 130.34 121.38 124.62 124.09 106.39 100.07	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 130.34 121.54 124.60 124.06 106.57 109.04	1.075 1.397 with B3I HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 130.38 121.45 124.64 124.09 106.46 100.06	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ 0 Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(7)-C(10)-C(11) C(7)-C(10)-C(11) H(31)-C(10)-C(11) H(31)-C(10)-C(11) C(10)-C(11)-H(32) C(10)-C(11)-H(32)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71 111.86 111.80 107.01 107.40 111.24	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75 111.87 111.87 106.97 107.32 111.49	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.89 111.85 106.94 107.34 111.33 111.51	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77 111.90 111.89 106.93 107.29 111.24
_	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)-N(60) C(1)-N(59)-N(60) N(57)-C(1)-C(13) N(59)-C(1)-C(13) N(59)-C(1)-C(13) C(1)-C(13)-H(38) C(1)-C(13)-H(39) C(1)-C(14)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88 130.49 121.35 124.47 124.13 106.25 109.05	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.90 128.38 130.34 121.38 124.62 124.09 106.39 109.07 112.01	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 130.34 121.54 124.60 124.06 106.57 109.04 112.46	1.075 1.397 with B3I HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 130.38 121.45 124.64 124.09 106.46 109.06 112.00	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ 0 Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(8)-C(9)-C(4) C(7)-C(10)-C(11) C(7)-C(10)-C(11) C(7)-C(10)-C(11) H(31)-C(10)-C(11) H(31)-C(10)-C(11) C(10)-C(11)-H(32) C(10)-C(11)-H(33) C(10)-C(11)-H(33)	1.09 1.46 5-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71 111.86 111.80 107.01 107.40 111.24 111.34 110.52	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75 111.87 106.97 107.32 111.49 111.49 111.49	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.89 111.85 106.94 107.34 111.33 111.51 110.64	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77 111.90 111.89 106.93 107.29 111.24 111.66 110.52
	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)-N(60) C(1)-N(59)-N(60) N(57)-C(1)-C(13) N(59)-C(1)-C(13) N(59)-C(1)-C(13) C(1)-C(13)-H(38) C(1)-C(13)-H(39) C(1)-C(13)-C(14) H(28) C(12) H(20)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88 130.49 121.35 124.47 124.13 106.25 109.05 113.69	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.38 130.34 121.38 124.62 124.09 106.39 109.07 112.91 107.91	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 130.34 121.54 124.60 124.06 106.57 109.04 113.46 107.62	1.075 1.397 with B3I HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 130.38 121.45 124.64 124.09 106.46 109.06 113.00 107.76	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(8)-C(9)-C(4) C(7)-C(10)-C(11) C(7)-C(10)-C(12) C(7)-C(10)-C(12) C(7)-C(10)-C(12) C(7)-C(10)-C(11) H(31)-C(10)-C(11) H(31)-C(10)-C(11) H(31)-C(10)-C(11) C(10)-C(11)-H(32) C(10)-C(11)-H(34) C(10)-C(11)-H(34) C(10)-C(11)-H(34)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71 111.86 111.80 107.01 107.40 111.24 111.34 110.53 111.34	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75 111.87 111.87 106.97 107.32 111.49 111.49 110.44 111.40	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.89 111.85 106.94 107.34 111.33 111.51 110.64 111.51	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77 111.90 111.89 106.93 107.29 111.24 111.66 110.53 111.67
	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)-N(60) C(1)-N(59)-N(60) N(57)-C(1)-C(13) N(59)-C(1)-C(13) N(59)-C(1)-C(13) C(1)-C(13)-H(38) C(1)-C(13)-H(39) C(1)-C(13)-H(39) H(38)-C(13)-H(39) H(38)-C(13)-H(39)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88 130.49 121.35 124.47 124.13 106.25 109.05 113.69 107.72 110.22	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.90 128.38 130.34 121.38 124.62 124.09 106.39 109.07 112.91 107.91 110.22	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 130.34 121.54 124.60 124.06 106.57 109.04 113.46 107.62 110.12	1.075 1.397 with B3I HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 130.38 121.45 124.64 124.09 106.46 109.06 113.00 107.76 110.16	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(8)-C(9)-C(4) C(7)-C(10)-C(11) C(7)-C(10)-C(12) C(7)-C(10)-C(12) H(31)-C(10)-C(11) H(31)-C(10)-C(11) H(31)-C(10)-C(11)-H(32) C(10)-C(11)-H(32) C(10)-C(11)-H(33) C(10)-C(11)-H(34) C(10)-C(12)-H(35) C(10)-C(12)-H(35)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71 111.86 111.80 107.01 107.40 111.24 111.34 110.53 111.34 110.53	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75 111.87 106.97 107.32 111.49 111.49 110.44 111.49 110.44	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.89 111.85 106.94 107.34 111.33 111.51 110.64 111.51 110.67	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77 111.90 111.89 106.93 107.29 111.24 111.66 110.53 111.67 110.52
_	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)-N(60) C(1)-N(59)-N(60) N(57)-C(1)-C(13) N(59)-C(1)-C(13) N(59)-C(1)-C(13) C(1)-C(13)-H(38) C(1)-C(13)-H(39) C(1)-C(13)-H(39) H(38)-C(13)-C(14) H(38)-C(13)-C(14)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88 130.49 121.35 124.47 124.13 106.25 109.05 113.69 107.72 110.23 109.67	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.90 128.38 130.34 121.38 124.62 124.09 106.39 109.07 112.91 107.91 110.22 110.13	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 130.34 121.54 124.60 124.06 106.57 109.04 113.46 107.62 110.12 109.81	1.075 1.397 with B3I HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 130.38 121.45 124.64 124.09 106.46 109.06 113.00 107.76 110.16 110.18	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(8)-C(9)-C(4) C(7)-C(10)-C(11) C(7)-C(10)-C(11) H(31)-C(10)-C(11) H(31)-C(10)-C(11) H(31)-C(10)-C(11) H(31)-C(10)-C(11)-H(32) C(10)-C(11)-H(33) C(10)-C(11)-H(34) C(10)-C(12)-H(35) C(10)-C(12)-H(36) C(10)-C(12)-H(36)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71 111.86 111.80 107.01 107.40 111.24 111.34 110.53 111.34 110.52 111.22	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75 111.87 106.97 107.32 111.49 111.49 110.44 111.49 110.44 111.49	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.89 111.85 106.94 107.34 111.33 111.51 110.64 111.51 110.67 111.33	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77 111.89 106.93 107.29 111.24 111.66 110.53 111.67 110.52
_	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)-N(60) C(1)-N(59)-N(60) C(1)-N(59)-N(60) N(57)-C(1)-C(13) N(59)-C(1)-C(13) N(59)-C(1)-C(13) C(1)-C(13)-H(38) C(1)-C(13)-H(38) C(1)-C(13)-H(39) H(38)-C(13)-C(14) H(39)-C(13)-C(14) C(13)-C(14) C(14)-C(14)-C(15)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88 130.49 121.35 124.47 124.13 106.25 109.05 113.69 107.72 110.23 109.67 121.27	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.90 128.38 130.34 121.38 124.62 124.09 106.39 109.07 112.91 107.91 110.22 110.13 121.72	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 130.34 121.54 124.60 124.06 106.57 109.04 113.46 107.62 110.12 109.81 121.47	1.075 1.397 with B3I HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 130.38 121.45 124.64 124.09 106.46 109.06 113.00 107.76 110.16 110.18 121.80	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ 0 Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(7)-C(10)-C(11) C(7)-C(10)-C(11) C(7)-C(10)-C(12) C(7)-C(10)-H(31) H(31)-C(10)-C(11)-H(32) C(10)-C(11)-H(32) C(10)-C(11)-H(32) C(10)-C(11)-H(33) C(10)-C(11)-H(35) C(10)-C(12)-H(35) C(10)-C(12)-H(36) C(10)-C(12)-H(37) H(35)-C(12)-H(37)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71 111.86 111.80 107.40 111.24 110.53 111.34 100.52 111.23 107.65	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75 111.87 106.97 107.32 111.49 110.44 111.49 110.44 111.22 107.67	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.89 111.85 106.94 107.34 111.33 111.51 110.64 111.51 110.67 111.33 107.52	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77 111.90 111.89 106.93 107.29 111.24 111.66 110.53 111.67 110.52 111.24 107.54
	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)-N(60) C(1)-N(59)-N(60) N(57)-C(1)-C(13) N(59)-C(1)-C(13) N(59)-C(1)-C(13) C(1)-C(13)-H(38) C(1)-C(13)-H(39) C(1)-C(13)-H(39) H(38)-C(13)-C(14) H(39)-C(13)-C(14) H(39)-C(13)-C(14) C(13)-C(14)-C(15) C(13)-C(14)-C(15) C(14)-C(14)-C(14)-C(14) C(14)-C(14)-C(14)-C(14) C(14)-C(14)-C(14)-C(14) C(14)-C(14)-C(14)-C(14) C(14)-C(14)-C(14)-C(14) C(14)-C(14)-C(14)-C(14)-C(14) C(14)-C(08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88 130.49 121.35 124.47 124.13 106.25 109.05 113.69 107.72 110.23 109.67 121.27 120.58	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.38 130.34 121.38 124.62 124.09 106.39 109.07 112.91 107.91 110.22 110.13 121.73 120.33	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 130.34 121.54 124.60 124.06 106.57 109.04 113.46 107.62 110.12 109.81 121.47 120.47	1.075 1.397 with B3I HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 130.38 121.45 124.64 124.09 106.46 109.06 113.00 107.76 110.16 110.18 121.80 120.35	$\begin{array}{c} C(25)-H(56)\\ C(25)-N(61)\\ \hline \\ \hline$	1.09 1.46 5-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71 111.86 111.80 107.01 107.40 111.24 111.34 110.53 111.34 110.52 111.23 107.65 107.75	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75 111.87 106.97 107.32 111.49 110.44 111.49 110.44 111.49 110.44 111.2 107.67 107.84	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.89 111.85 106.94 107.34 111.33 111.51 110.64 111.51 110.67 111.33 107.52 107.63	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77 111.90 111.89 106.93 107.29 111.24 111.66 110.53 111.67 110.52 111.24 107.54 107.71
_	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)-N(60) C(1)-N(59)-N(60) N(57)-C(1)-C(13) N(59)-C(1)-C(13) N(59)-C(1)-C(13) C(1)-C(13)-H(38) C(1)-C(13)-H(38) C(1)-C(13)-C(14) H(38)-C(13)-C(14) H(38)-C(13)-C(14) H(39)-C(13)-C(14) H(39)-C(13)-C(14) H(39)-C(13)-C(14) C(13)-C(14)-C(15) C(13)-C(14)-C(15) C(14)-C(15) H(40)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88 130.49 121.35 124.47 124.13 106.25 109.05 113.69 107.72 110.23 109.67 121.27 120.58 119.51	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.38 130.34 121.38 124.62 124.09 106.39 109.07 112.91 107.91 110.22 110.13 121.73 120.33 119.71	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 130.34 121.54 124.60 124.06 106.57 109.04 113.46 107.62 110.12 109.81 121.47 120.47 119.60	1.075 1.397 with B3I HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 130.38 121.45 124.64 124.09 106.46 109.06 113.00 107.76 110.16 110.18 121.80 120.35 119.75	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ 0 Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(7)-C(10)-C(11) C(7)-C(10)-C(11) C(7)-C(10)-C(12) C(7)-C(10)-C(12) C(7)-C(10)-C(12) H(31)-C(10)-C(11)-H(32) C(10)-C(11)-H(32) C(10)-C(11)-H(34) C(10)-C(11)-H(34) C(10)-C(12)-H(35) C(10)-C(12)-H(35) C(10)-C(12)-H(36) H(35)-C(12)-H(37) H(35)-C(12)-H(37)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71 111.86 111.80 107.01 107.40 111.24 110.53 111.34 110.53 111.34 110.52 111.23 107.65 107.75 108.18	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75 111.87 106.97 107.32 111.49 110.44 111.49 110.44 111.49 110.44 111.12 107.67 107.84 108.11	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.89 111.85 106.94 107.34 111.33 111.51 110.64 111.51 110.67 111.33 107.52 107.63 107.98	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77 111.90 111.89 106.93 107.29 111.24 111.66 110.53 111.67 110.52 111.24 107.54 107.71 107.97
_	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)-N(60) N(57)-C(1)-C(13) N(59)-C(1)-C(13) N(59)-C(1)-C(13) N(59)-C(1)-C(13) C(1)-C(13)-H(38) C(1)-C(13)-H(39) C(1)-C(13)-H(39) H(38)-C(13)-C(14) H(38)-C(13)-C(14) H(39)-C(13)-C(14) H(39)-C(13)-C(14) C(13)-C(14)-C(15) C(13)-C(14)-C(15) C(14)-C(15)-H(40) C(14)-C(15)-C(16)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88 130.49 121.35 124.47 124.13 106.25 109.05 113.69 107.72 110.23 109.67 121.27 120.58 119.51 121.59	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.90 128.38 130.34 121.38 124.62 124.09 106.39 109.07 112.91 107.91 110.22 110.13 121.73 120.33 119.71 121.67	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 130.34 121.54 124.60 124.06 106.57 109.04 113.46 107.62 110.12 109.81 121.47 120.47 119.60 121.60	1.075 1.397 with B31 HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 130.38 121.45 124.64 124.09 106.46 109.06 113.00 107.76 110.16 110.18 121.80 120.35 119.75 121.71	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ 0 Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(8)-C(9)-C(4) C(7)-C(10)-C(11) C(7)-C(10)-C(12) C(7)-C(10)-C(12) C(7)-C(10)-C(11) H(31)-C(10)-C(11) H(31)-C(10)-C(11) C(10)-C(11)-H(33) C(10)-C(11)-H(33) C(10)-C(12)-H(35) C(10)-C(12)-H(36) C(10)-C(12)-H(37) H(35)-C(12)-H(37) H(36)-C(12)-H(37) H(32)-C(11)-H(33)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71 111.86 111.80 107.01 107.40 111.24 110.53 111.34 110.52 111.34 110.52 111.23 107.65 107.75 108.18 107.75	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75 111.87 106.97 107.32 111.49 110.44 111.49 110.44 111.12 107.67 107.84 108.11 107.86	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.89 111.85 106.94 107.34 111.33 111.51 110.64 111.51 110.67 111.33 107.52 107.63 107.98 107.66	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77 111.90 111.89 106.93 107.29 111.24 111.66 110.53 111.67 110.52 111.24 107.54 107.71 107.97 107.73
_	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)-N(60) C(1)-N(59)-N(60) C(1)-N(59)-N(60) N(57)-C(1)-C(13) N(59)-C(1)-C(13) N(59)-C(1)-C(13) C(1)-C(13)-H(38) C(1)-C(13)-H(38) C(1)-C(13)-H(39) H(38)-C(13)-C(14) H(38)-C(13)-C(14) H(39)-C(13)-C(14) H(39)-C(13)-C(14) C(13)-C(14)-C(15) C(13)-C(14)-C(15) C(14)-C(15)-H(40) C(14)-C(15)-C(16) H(40)-C(15)-C(16)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88 130.49 121.35 124.47 124.13 106.25 109.05 113.69 107.72 110.23 109.67 121.27 120.58 119.51 121.59 118.88	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.90 128.38 130.34 121.38 124.62 124.09 106.39 109.07 112.91 107.91 110.22 110.13 121.73 120.33 119.71 121.67 118.61	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 130.34 121.54 124.60 124.06 106.57 109.04 113.46 107.62 110.12 109.81 121.47 120.47 119.60 121.60 118.78	1.075 1.397 with B3I HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 130.38 121.45 124.64 124.09 106.46 109.06 113.00 107.76 110.16 110.18 121.80 120.35 119.75 121.71 118 52	$\begin{array}{c} C(25)-H(56)\\ C(25)-N(61)\\ \hline \\ \hline$	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71 111.86 111.80 107.01 107.40 111.24 111.34 110.53 111.34 110.52 111.23 107.65 107.75 108.18 107.75 108.17	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75 111.87 106.97 107.32 111.49 110.44 111.49 110.44 111.49 110.44 111.12 107.67 107.84 108.11 107.86 108.10	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.89 111.85 106.94 107.34 111.33 111.51 110.64 111.51 110.67 111.33 107.52 107.63 107.98 107.66 108.00	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77 111.90 111.89 106.93 107.29 111.24 111.66 110.53 111.67 110.52 111.24 107.54 107.54 107.71 107.97 107.73 107.96
_	C(6)-H(28) 1. C(6)-C(7) 1. Table Bond Angles N(57)-C(1)-N(59) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(57)-N(58)-C(2) N(58)-C(2)-O(62) O(62)-C(2)-N(59) C(2)-N(59)-N(60) C(1)-N(59)-N(60) C(1)-N(59)-N(60) N(57)-C(1)-C(13) N(59)-C(1)-C(13) N(59)-C(1)-C(13) C(1)-C(13)-H(38) C(1)-C(13)-H(38) C(1)-C(13)-H(39) H(38)-C(13)-C(14) H(38)-C(13)-C(14) H(39)-C(13)-C(14) H(39)-C(13)-C(14) C(13)-C(14)-C(15) C(13)-C(14)-C(15) C(14)-C(15)-H(40) C(14)-C(15)-C(16) H(40)-C(15)-C(16) C(15)-C(16)-C(17)	08 40 6: The c B3LYP 6-31 111.35 113.22 122.06 124.48 129.03 128.88 130.49 121.35 124.47 124.13 106.25 109.05 113.69 107.72 110.23 109.67 121.27 120.58 119.51 121.59 118.88 119.51	1.07 1.39 alculated b HF 6-31 111.23 112.55 122.13 125.14 128.90 128.38 130.34 121.38 124.62 124.09 106.39 109.07 112.91 107.91 110.22 110.13 121.73 120.33 119.71 121.67 118.61 119.59	1.085 1.404 ond angles B3LYP 6-311 111.29 113.14 122.08 124.48 129.19 128.71 130.34 121.54 124.60 124.06 106.57 109.04 113.46 107.62 110.12 109.81 121.47 120.47 119.60 121.60 118.78 119.62	1.075 1.397 with B3I HF 6-311 111.22 112.54 122.24 125.06 128.98 128.31 130.38 121.45 124.64 124.09 106.46 109.06 113.00 107.76 110.16 110.18 121.80 120.35 119.75 121.71 118.52 119.66	C(25)-H(56) C(25)-N(61) LYP/HF 631G(d)/ Bond Angles H(28)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-H(29) C(7)-C(8)-C(9) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(8)-C(9)-H(30) C(7)-C(10)-C(11) C(7)-C(10)-C(11) C(7)-C(10)-C(11) H(31)-C(10)-C(11) H(31)-C(10)-C(11) C(7)-C(10)-H(31) H(31)-C(10)-H(31) H(31)-C(10)-H(31) C(10)-C(11)-H(32) C(10)-C(11)-H(33) C(10)-C(12)-H(37) H(35)-C(12)-H(37) H(35)-C(12)-H(37) H(32)-C(11)-H(34) H(33)-C(11)-H(34)	1.09 1.46 6-311G(d) B3LYP 6-31 120.58 117.82 119.38 121.18 119.85 120.71 111.86 111.80 107.01 107.40 111.24 111.34 110.52 111.23 107.65 107.75 108.18 107.75 108.17 107.63	1.08 1.45 0 of the mo HF6-31 119.83 117.86 119.71 121.07 119.46 120.75 111.87 106.97 107.32 111.49 110.44 111.49 110.44 111.12 107.67 107.84 108.11 107.86 108.10 107.66	1.092 1.465 lecule B3LYP 6-311 119.72 117.75 119.43 121.21 119.70 120.77 111.89 111.85 106.94 107.34 111.33 111.51 110.64 111.51 110.67 111.33 107.52 107.63 107.98 107.66 108.00 107.50	1.081 1.454 HF 6-311 119.88 117.79 119.75 121.10 119.39 120.77 111.90 111.89 106.93 107.29 111.24 111.66 110.53 111.67 110.52 111.24 107.54 107.71 107.97 107.73 107.96 107.52

C(15)-0	C(16)-H((41) 119	.36 119	9.07 119.18	118.95	N(58)-C(21)-H(4	7) 106.64	111.96	106.80	106.64
H(41)-	C(16)-C(17) 121	.11 12	1.32 121.18	121.38	N(58)-C(21)-H(4	8) 106.20	109.06	106.17	106.74
C(16)-0	C(17)-O(63) 124	.81 124	4.78 124.87	124.87	N(58)-C(21)-N(6	1) 113.02	113.11	113.09	113.30
O(63)-	C(17)-C(18) 115	.68 115	5.80 115.80	115.86	C(21)-N(61)-C(2	2) 112.78	109.35	113.03	112.53
C(16)-0	C(17)-C(18) 119	.49 119	9.41 118.44	119.26	C(21)-N(61)-C(2	5) 113.22	113.68	113.33	113.61
C(17)-0	C(18)-H(42) 118	3.51 118	8.57 118.41	118.51	N(61)-C(22)-H(4	9) 112.23	111.96	108.97	109.13
C(17)-0	C(18)-C(19) 120	.16 120).17 120.26	120.26	N(61)-C(22)-H(5	0) 108.92	109.06	112.07	111.85
H(42)-	C(18)-C((19) 121	.31 12	1.24 121.32	121.22	H(49)-C(22)-H(5	0) 108.01	108.01	108.00	107.88
C(18)-	-C(19)-H	(43 119)	50 119	9 28 119 41	119.21	H(49	-C(22)-C(2)	3) 108.82	109.05	108.87	109.07
O(63)-0	С(20)-Н((44) 105	.94 10e	5.24 111.57	111.46	H(50	-C(22)-C(2)	3) 109.57	109.35	109.53	109.07
O(63)-	С(20)-Н((45) 111	62 11 [°]	144 11155	111.10	C(22)-C(23)-H(5	1) 110.67	110.63	109.33	109.20
O(63)	C(20)-H((46) 111	59 11	1.44 105.84	106.24	C(22) C(23) H(5)	1) 100.07	109.39	110.82	110.65
$H(44)_{-}$	C(20)-H((45) 100	1.37 10	1.44 105.04	100.24	H(51)-C(23)-H(5)	2) 109.22 2) 108.86	109.59	108.82	108.55
H(44) - H(44	C(20)-H((45) 109 (46) 100	1025 102	0.14 100.30	109.50	C(22)	$-C(23)-\Pi(3)$	$\begin{array}{c} 2 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 3 \\ 5 \\ 1 \\ 1 \\ 3 \\ 5 \\ 1 \\ 1 \\ 1 \\ 3 \\ 5 \\ 1 \\ 1 \\ 3 \\ 5 \\ 1 \\ 1 \\ 1 \\ 3 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	111.03	111 42	111 22
H(45)-	C(20)-H((46) 109	10^{-10}	100.24	109.11	H(52)-C(23)-O(6	4) 106 5 0	106.02	100.08	112.10
N(58)	N(57) C	(1) 105	(0) 10	5.56 105.22	105.60	П(52 Ц(51	C(23) = O(0)	(4) 110.50	110.11	105.70	106.05
N(50)-	N(57)-C	(1) 103 (2) 119	2.21 10.	103.43	105.09	П(31 С(22) - C(23) - O(0)	(4) 110.10	110.11	110.42	110.95
N(39)-	-N(00)-C	(5) 110	0.50 II:	9.50 116.65	119.47	C(25)- $O(04)-C(24)$	(+) 110.74	112.17	106.24	110.01
IN(00)-	-C(3)-H(2)	20) IZI (4) 117	.03 124	2.19 121./8	122.13	0(64)- $C(24)$ -H(3)) $C(24)$ H(5)	3) 100.42	110.80	100.04	100.89
H(26)	C(3) - C(3) - C(3)	(+) 11/		1.12 11/.50	117.04	U(64	J = C(24) = H(3)	+) 110.08 4) 100.77	110.02	109.92	109.94
C(3)-	-C(4)-C(3	122	.94 122	2.70 122.93	122.77	H(53	J - C(24) - H(5)	108.77	108.63	108.75	108.50
C(3)-	-C(4)-C(9) 118 () 100	5.65 IIX	8.72 118.77	118.74	O(64	-C(24)-C(23)	5) 111.35	111.02	111.37	111.16
C(4)-	-C(5)-C(6	5) 120	0.49 120	120.57	120.53	H(55)-C(25)-N(6	1) 111.25	111.24	111.03	111.10
C(4)-0	C(5)-H(2	7) 118	.92 119	9.34 118.95	119.35	H(56)-C(25)-N(6	1) 109.10	109.39	109.21	109.52
H(27))-C(5)-C(6) 120	0.58 120	0.15 120.46	120.11	C(24)-C(25)-N(6	1) 109.47	109.44	109.59	109.64
C(5)-0	C(6)-H(2	8) 119	0.01 118	8.86 118.87	118.79	H(55)-C(25)-H(5	6) 107.57	107.72	107.60	107.54
C(5)-	-C(6)-C(7)	7) 121	.37 12	1.29 121.40	121.32						
	Tabl	e 7: The c	calculated	mulliken char	ges datas	B3LY	P/HF 631G	(d)/ 6-311C	G(d) of the	molecule	
	Tabl	e 7: The c DFT6-31	calculated HF6-31	mulliken char DFT6-311	ges datas HF6-311	B3LY	P/HF 631G DFT6-31	(d)/ 6-3110 HF6-31	G(d) of the DFT6-311	molecule HF6-311	
	Table	e 7: The c DFT6-31 0.564	calculated HF6-31 0.644	mulliken char DFT6-311 0.466	ges datas HF6-311 0.592	B3LY H33	P/HF 631G DFT6-31 0.144	(d)/ 6-3110 HF6-31 1 0.158	DFT6-311 0.201	molecule HF6-311 0.203	
	Table C1 C2	e 7: The c DFT6-31 0.564 0.846	HF6-31 0.644 1.097	mulliken char DFT6-311 0.466 0,595	rges datas HF6-311 0.592 0.790	B3LY H33 H34	P/HF 631G DFT6-31 0.144 0.144	(d)/ 6-3110 HF6-31 1 0.158 0.163	6(d) of the DFT6-311 0.201 0.207	molecule HF6-311 0.203 0.210	
	Table C1 C2 C3	e 7: The c DFT6-31 0.564 0.846 0.028	HF6-31 0.644 1.097 0.099	mulliken char DFT6-311 0.466 0,595 -0.064	rges datas HF6-311 0.592 0.790 0.040	B3LY H33 H34 H35	P/HF 631G DFT6-31 0.144 0.144 0.152	(d)/ 6-3110 HF6-31 1 0.158 0.163 0.158	G(d) of the DFT6-311 0.201 0.207 0.217	molecule HF6-311 0.203 0.210 0.221	
	Table C1 C2 C3 C4	e 7: The c DFT6-31 0.564 0.846 0.028 0.135	HF6-31 0.644 1.097 0.099 -0.038	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009	ges datas HF6-311 0.592 0.790 0.040 -0.062	B3LY H33 H34 H35 H36	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144	(d)/ 6-311C HF6-31 1 0.158 0.163 0.158 0.163	G(d) of the DFT6-311 0.201 0.207 0.217 0.207	molecule HF6-311 0.203 0.210 0.221 0.218	
	Table I C1 C2 C3 C4 C5	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177	B3LY H33 H34 H35 H36 H37	P/HF 631G DFT6-31 0.144 0.144 0.144 0.152 0.144 0.144	(d)/ 6-3110 HF6-31 0.158 0.163 0.163 0.173	(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.202	molecule HF6-311 0.203 0.210 0.221 0.218 0.204	
	Table C1 C2 C3 C4 C5 C6	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229	B3LY H33 H34 H35 H36 H37 H38	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.144 0.144 0.180	(d)/ 6-3110 HF6-31 0.158 0.163 0.158 0.163 0.173 0.220	(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.202 0.202 0.251	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265	-
	Table C1 C2 C3 C4 C5 C6 C7	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195	Calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072	B3LY H33 H34 H35 H36 H37 H38 H39	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.144 0.144 0.144 0.180 0.174	(d)/ 6-3110 HF6-31 0.158 0.163 0.158 0.163 0.173 0.220 0.217	(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.202 0.251 0.246	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269	-
	Table I C1 C2 C3 C4 C5 C6 C7 C8	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249	B3LY H33 H34 H35 H36 H37 H38 H39 H40	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.144 0.144 0.144 0.180 0.174 0.129	(d)/ 6-3110 HF6-31 1 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220	(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.202 0.251 0.246 0193	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183	alculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.144 0.144 0.144 0.144 0.174 0.129 0.130	(d)/ 6-3110 HF6-31 1 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.218	(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.202 0.251 0.246 0193 0.207	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.298	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.144 0.144 0.144 0.144 0.180 0.174 0.129 0.130 0.139 0.145	(d)/ 6-3110 HF6-31 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.218 0.208 0.208	(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.202 0.251 0.246 0193 0.207 0.202 0.207 0.207	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.210 0.221 0.212 0.212 0.212 0.212 0.213 0.212 0.213 0.210 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.223 0.221 0.221 0.224 0.224 0.225 0.255 0.25	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C111	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162 -0.162	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195 -0.470	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.593 -0.593	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312 -0.588	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42 H43	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.144 0.144 0.144 0.144 0.144 0.180 0.174 0.129 0.130 0.139 0.143	(d)/ 6-3110 HF6-31 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.218 0.208 0.209 0.209	(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.202 0.251 0.246 0193 0.207 0.202 0.201 0.201	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162 -0.440 0.440	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195 -0.470 -0.470 0.470	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.593 -0.593 -0.593	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312 -0.588 -0.588	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42 H43 H44	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.144 0.144 0.144 0.144 0.144 0.174 0.129 0.130 0.139 0.143 0.170 0.143	(d)/ 6-3110 HF6-31 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.217 0.220 0.218 0.208 0.209 0.192	(d) of the DFT6-311 0.201 0.207 0.207 0.207 0.202 0.251 0.246 0193 0.207 0.202 0.201 0.202 0.201 0.218 0.203	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208	-
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162 -0.440 -0.440 -0.447 0.55	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195 -0.470 -0.470 -0.470 -0.402 0.052	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.593 -0.593 -0.593 -0.580 0.580	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312 -0.588 -0.588 -0.590	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42 H43 H44 H45	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.152 0.144 0.144 0.180 0.174 0.129 0.130 0.139 0.143 0.170 0.151 0.151	(d)/ 6-3110 HF6-31 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.217 0.220 0.218 0.208 0.209 0.192 0.161 0.161	(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.202 0.251 0.246 0193 0.207 0.202 0.201 0.202 0.201 0.218 0.208 0.208	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208 0.208 0.208	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162 -0.440 -0.440 -0.417 0.173	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195 -0.470 -0.470 -0.470 -0.402 -0.002	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.593 -0.593 -0.593 -0.580 0.048 0.048	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312 -0.588 -0.588 -0.590 0.001 0.001	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42 H43 H44 H45 H46	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.152 0.144 0.144 0.180 0.174 0.129 0.130 0.139 0.143 0.170 0.151 0.152	(d)/ 6-3110 HF6-31 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.217 0.220 0.218 0.208 0.209 0.192 0.161 0.162	(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.202 0.251 0.246 0193 0.207 0.202 0.201 0.218 0.208 0.228 0.228	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208 0.208 0.206 0.229 0.208	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162 -0.440 -0.440 -0.417 0.173 -0.195 -0.195	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195 -0.470 -0.470 -0.402 -0.002 -0.002 -0.0199	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.593 -0.593 -0.580 0.048 -0.197	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312 -0.588 -0.588 -0.588 -0.590 0.001 -0.214	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42 H43 H44 H45 H46 H47	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.152 0.144 0.144 0.180 0.174 0.129 0.130 0.139 0.143 0.170 0.151 0.152 0.148	(d)/ 6-3110 HF6-31 1 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.217 0.220 0.218 0.208 0.209 0.192 0.161 0.162 0.180 0.200	(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.202 0.251 0.246 0193 0.207 0.202 0.201 0.202 0.201 0.218 0.208 0.228 0.228 0.231 0.202	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.2041	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162 -0.440 -0.440 -0.440 -0.417 0.173 -0.195 -0.194 0.275	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195 -0.470 -0.470 -0.470 -0.402 -0.002 -0.199 -0.288	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.593 -0.593 -0.593 -0.580 0.048 -0.197 -0.284	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312 -0.588 -0.588 -0.588 -0.590 0.001 -0.214 -0.318 0.214	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42 H43 H44 H45 H46 H47 H48	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.152 0.144 0.144 0.144 0.129 0.130 0.174 0.129 0.130 0.139 0.143 0.170 0.151 0.152 0.148 0.176	(d)/ 6-3110 HF6-31 1 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.218 0.208 0.209 0.192 0.161 0.162 0.180 0.209 0.192	(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.202 0.251 0.246 0193 0.207 0.202 0.201 0.202 0.201 0.202 0.201 0.208 0.228 0.231 0.208 0.208	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.241 0.222	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162 -0.440 -0.440 -0.440 -0.417 0.173 -0.195 -0.194 0.375 0.120	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195 -0.470 -0.470 -0.470 -0.402 -0.002 -0.199 -0.288 0.435 0.247	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.593 -0.593 -0.593 -0.593 -0.580 0.048 -0.197 -0.284 0.266 0.204	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312 -0.588 -0.588 -0.588 -0.590 0.001 -0.214 -0.318 0.348 0.348	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42 H43 H44 H45 H46 H47 H48 H49 H50	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.152 0.144 0.144 0.144 0.174 0.129 0.130 0.174 0.129 0.130 0.139 0.143 0.170 0.151 0.152 0.148 0.176 0.152 0.144 0.170 0.151 0.152 0.143 0.170 0.151 0.152 0.144 0.170 0.123 0.123 0.123	(d)/ 6-3110 HF6-31 1 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.217 0.220 0.218 0.208 0.209 0.192 0.161 0.162 0.180 0.209 0.145 0.145	(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.202 0.251 0.246 0193 0.207 0.202 0.201 0.218 0.208 0.228 0.231 0.208 0.217 0.208 0.217 0.208 0.217 0.207 0.202 0.217 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.202 0.217 0.207 0.202 0.251 0.246 0.207 0.202 0.207 0.202 0.2217 0.202 0.251 0.207 0.202 0.207 0.202 0.207 0.202 0.207 0.202 0.207 0.202 0.207 0.202 0.207 0.202 0.207 0.202 0.207 0.202 0.207 0.202 0.207 0.202 0.207 0.202 0.207 0.202 0.207 0.202 0.207 0.202 0.201 0.202 0.201 0.202 0.201 0.202 0.201 0.202 0.201 0.218 0.208 0.228 0.208 0.207 0.207 0.207 0.207 0.207 0.207 0.208 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.208 0.207	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.241 0.222 0.219 0.219 0.219 0.219 0.219 0.219 0.221 0.221 0.210 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.225 0.265 0.269 0.228 0.229 0.208 0.202 0.229 0.208 0.202 0.229 0.208 0.229 0.22	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C10	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162 -0.440 -0.440 -0.440 -0.447 0.173 -0.195 -0.195 -0.194 0.375 -0.170 0.182	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195 -0.470 -0.470 -0.470 -0.402 -0.002 -0.002 -0.199 -0.288 0.435 -0.247 0.0247	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.593 -0.593 -0.593 -0.580 0.048 -0.197 -0.284 0.266 -0.224 -0.224 -0.224 -0.224 -0.224 -0.266 -0.224 -0.224 -0.224 -0.224 -0.266 -0.224 -0.224 -0.224 -0.224 -0.284 -0.266 -0.224 -0.224 -0.224 -0.284 -0.266 -0.224 -0.224 -0.224 -0.284 -0.266 -0.224 -0.224 -0.284 -0.284 -0.266 -0.224 -0.224 -0.284 -0.266 -0.224 -0.224 -0.284 -0.285 -0.284 -0.284 -0.284 -0.266 -0.224 -0.224 -0.284 -0.285 -0.284 -0.284 -0.285 -0.284 -0.284 -0.284 -0.285 -0.284 -0.285 -0.285 -0.285 -0.285	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312 -0.588 -0.588 -0.588 -0.590 0.001 -0.214 -0.318 0.348 -0.257 0.125	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42 H43 H44 H45 H46 H47 H48 H49 H50	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.152 0.144 0.144 0.180 0.174 0.129 0.130 0.139 0.143 0.170 0.151 0.152 0.148 0.176 0.123 0.150 0.145	(d)/ 6-3110 HF6-31 1 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.217 0.220 0.218 0.208 0.209 0.192 0.161 0.162 0.180 0.209 0.145 0.179 0.174	(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.202 0.251 0.246 0193 0.207 0.202 0.201 0.218 0.208 0.228 0.228 0.231 0.208 0.217 0.202 0.217 0.202 0.201 0.217 0.202 0.217 0.202 0.217 0.202 0.217 0.202 0.217 0.202 0.217 0.202 0.217 0.202 0.217 0.202 0.217 0.202 0.217 0.202 0.221 0.202 0.221 0.246 0.203 0.207 0.202 0.221 0.246 0.207 0.202 0.201 0.246 0.207 0.202 0.201 0.207 0.202 0.221 0.246 0.207 0.202 0.201 0.207 0.202 0.207 0.202 0.201 0.207 0.202 0.207 0.202 0.207 0.202 0.207 0.202 0.201 0.207 0.202 0.201 0.207 0.202 0.201 0.202 0.201 0.202 0.201 0.218 0.208 0.217 0.208 0.217 0.208 0.217 0.208 0.217 0.208 0.217 0.208 0.217 0.208 0.217 0.208 0.217 0.208 0.217 0.208 0.217 0.208 0.217 0.208 0.217 0.208 0.217 0.208 0.217 0.208 0.217 0.208 0.217 0.208 0.217 0.202 0.217 0.208 0.217 0.202 0.218 0.208 0.217 0.202 0.217 0.222	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.210 0.221 0.212 0.218 0.203 0.201 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.210 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208 0.208 0.209 0.229 0.208 0.209 0.229 0.208 0.209 0.229 0.208 0.209 0.229 0.208 0.209 0.229 0.208 0.209 0.229 0.208 0.209 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.229 0.228 0.208 0.229 0.228 0.229 0.208 0.229 0.229 0.228 0.229 0.208 0.229 0.228 0.229 0.228 0.229 0.208 0.229 0.229 0.228 0.229 0.228 0.229 0.208 0.229 0.229 0.228 0.229 0.228 0.229 0.228 0.229 0.228 0.229 0.22	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C22	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162 -0.440 -0.440 -0.447 0.173 -0.195 -0.195 -0.194 0.375 -0.170 -0.182 0.215	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195 -0.470 -0.470 -0.470 -0.402 -0.002 -0.002 -0.199 -0.288 0.435 -0.247 -0.193 0.195	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.593 -0.593 -0.593 -0.580 0.048 -0.197 -0.284 0.266 -0.224 -0.174 0.460	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312 -0.588 -0.588 -0.590 0.001 -0.214 -0.318 0.348 -0.257 -0.185 0.412	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42 H43 H44 H45 H46 H47 H48 H49 H50 H51	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.152 0.144 0.152 0.144 0.160 0.174 0.129 0.130 0.139 0.143 0.170 0.151 0.152 0.148 0.176 0.123 0.145 0.124	(d)/ 6-3110 HF6-31 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.217 0.220 0.218 0.209 0.192 0.161 0.162 0.180 0.209 0.145 0.179 0.174 0.158	(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.202 0.251 0.246 0193 0.207 0.202 0.201 0.218 0.207 0.202 0.201 0.218 0.208 0.228 0.228 0.231 0.208 0.217 0.182 0.193 0.205	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208 0.206 0.229 0.206 0.229 0.241 0.222 0.219 0.188 0.200 0.206	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162 -0.440 -0.440 -0.447 0.173 -0.195 -0.194 0.375 -0.170 -0.182 -0.215 0.028	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195 -0.470 -0.470 -0.470 -0.470 -0.470 -0.470 -0.288 0.435 -0.247 -0.193 -0.186 0.111	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.593 -0.593 -0.593 -0.580 0.048 -0.197 -0.284 0.266 -0.224 -0.174 -0.460 0.150	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312 -0.588 -0.588 -0.588 -0.588 -0.590 0.001 -0.214 -0.318 0.348 -0.257 -0.185 -0.412 0.067	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42 H43 H44 H45 H46 H47 H48 H49 H50 H51 H52	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.152 0.144 0.152 0.144 0.144 0.180 0.174 0.129 0.130 0.143 0.170 0.151 0.152 0.148 0.176 0.123 0.145 0.145 0.145	(d)/ 6-3110 HF6-31 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.217 0.220 0.218 0.209 0.192 0.161 0.162 0.180 0.209 0.145 0.179 0.174 0.158 0.158	(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.202 0.251 0.246 0193 0.207 0.202 0.201 0.218 0.208 0.228 0.221 0.208 0.2231 0.208 0.217 0.182 0.193 0.205 0.205	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.241 0.222 0.219 0.188 0.200 0.206 0.200 0.201 0.210 0.218 0.204 0.205 0.229 0.208 0.206 0.229 0.208 0.200 0.229 0.208 0.200 0.209 0.208 0.209 0.209 0.208 0.209 0.208 0.209 0.209 0.208 0.209 0.209 0.208 0.209 0.200 0.209 0.200 0.20	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162 -0.440 -0.440 -0.447 0.173 -0.195 -0.194 0.375 -0.170 -0.182 -0.215 0.008 0.141	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195 -0.470 -0.470 -0.402 -0.002 -0.199 -0.288 0.435 -0.247 -0.193 -0.186 0.111 0.145	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.593 -0.593 -0.593 -0.580 0.048 -0.197 -0.284 0.266 -0.224 -0.266 -0.224 -0.174 -0.460 -0.150 212	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312 -0.588 -0.588 -0.590 0.001 -0.214 -0.318 0.348 -0.257 -0.185 -0.412 -0.067 0.222	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42 H43 H44 H45 H46 H47 H48 H49 H50 H51 H52 H53	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.152 0.144 0.152 0.144 0.129 0.130 0.174 0.129 0.130 0.143 0.170 0.151 0.152 0.148 0.176 0.123 0.134 0.145 0.134 0.145 0.121	(d)/ 6-3110 HF6-31 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.217 0.220 0.218 0.209 0.192 0.161 0.162 0.180 0.209 0.145 0.174 0.158 0.154 0.154 0.154	G(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.217 0.207 0.217 0.207 0.217 0.207 0.202 0.217 0.202 0.201 0.202 0.201 0.202 0.201 0.218 0.208 0.217 0.182 0.193 0.205 0.206 0.100	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.241 0.222 0.219 0.188 0.200 0.206 0.200 0.201 0.203 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.228 0.205 0.208 0.209 0.208 0.209 0.208 0.209 0.208 0.209 0.208 0.209 0.208 0.209 0.208 0.209 0.208 0.209 0.208 0.209 0.208 0.209 0.208 0.200 0.209 0.208 0.200 0.209 0.208 0.200 0.209 0.208 0.200 0.209 0.208 0.200 0.209 0.208 0.200 0.209 0.209 0.209 0.208 0.200 0.209 0.206 0.200 0.206 0.200 0.206 0.200 0.206 0.200 0.206 0.200 0.206 0.200 0.206 0.207 0.20	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162 -0.440 -0.440 -0.417 0.173 -0.195 -0.194 0.375 -0.170 -0.182 -0.215 0.008 -0.141 0.022	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195 -0.470 -0.470 -0.470 -0.402 -0.002 -0.199 -0.288 0.435 -0.247 -0.193 -0.186 0.111 -0.145 0.084	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.593 -0.593 -0.593 -0.580 0.048 -0.197 -0.284 0.266 -0.224 -0.174 -0.460 -0.150 .312 0.210	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312 -0.588 -0.588 -0.590 0.001 -0.214 -0.318 0.348 -0.257 -0.185 -0.412 -0.067 -0.282 0.155	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42 H43 H44 H45 H46 H47 H48 H49 H50 H51 H52 H53 H54	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.152 0.144 0.152 0.144 0.129 0.130 0.174 0.129 0.130 0.151 0.152 0.148 0.176 0.151 0.152 0.148 0.176 0.123 0.145 0.131 0.121	(d)/ 6-3110 HF6-31 1 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.217 0.220 0.218 0.209 0.192 0.161 0.162 0.180 0.209 0.145 0.174 0.158 0.154 0.174 0.154	G(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.217 0.207 0.217 0.207 0.217 0.207 0.217 0.202 0.217 0.202 0.201 0.202 0.201 0.218 0.208 0.217 0.182 0.193 0.205 0.206 0.190	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.241 0.222 0.219 0.188 0.200 0.206 0.201 0.205 0.205 0.205 0.235 0.231 0.229 0.208 0.206 0.206 0.206 0.208 0.206 0.209 0.228 0.201 0.210 0.204 0.265 0.265 0.265 0.265 0.228 0.235 0.231 0.229 0.208 0.206 0.229 0.208 0.206 0.206 0.209 0.208 0.206 0.209 0.208 0.206 0.209 0.208 0.206 0.209 0.208 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.208 0.206 0.206 0.208 0.206 0.206 0.208 0.206 0.207 0.208 0.206 0.206 0.207 0.208 0.206 0.209 0.208 0.206 0.209 0.208 0.200 0.209 0.206 0.200 0.206 0.200 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.207 0.20	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162 -0.440 -0.440 -0.440 -0.417 0.173 -0.195 -0.194 0.375 -0.194 0.375 -0.170 -0.182 -0.215 0.008 -0.141 -0.033 0.026	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195 -0.470 -0.470 -0.470 -0.470 -0.402 -0.002 -0.199 -0.288 0.435 -0.247 -0.193 -0.186 0.111 -0.145 0.084 0.004	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.593 -0.593 -0.593 -0.593 -0.593 -0.580 0.048 -0.197 -0.284 0.266 -0.224 -0.174 -0.460 -0.150 .312 0.212	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312 -0.588 -0.588 -0.590 0.001 -0.214 -0.318 0.348 -0.257 -0.185 -0.412 -0.067 -0.282 -0.155 0.155	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42 H43 H44 H45 H46 H47 H48 H49 H50 H51 H52 H53 H54 H55	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.152 0.144 0.152 0.144 0.144 0.129 0.130 0.174 0.129 0.130 0.151 0.152 0.148 0.176 0.152 0.148 0.176 0.152 0.148 0.176 0.152 0.144 0.152 0.143 0.170 0.151 0.152 0.145 0.121 0.152 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.121 0.152 0.146 0.121 0.152 0.145 0.131 0.121 0.156 0.145 0.121 0.156 0.121 0.156 0.121 0.156 0.121 0.156 0.121 0.156 0.121 0.156 0.121 0.156 0.121 0.156 0.121 0.156 0.121 0.156 0.121 0.156 0.121 0.156 0.156 0.121 0.156 0.156 0.156 0.121 0.156 0.156 0.121 0.156 0.156 0.156 0.121 0.156 0.156 0.156 0.121 0.156 0.1	(d)/ 6-3110 HF6-31 1 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.217 0.220 0.218 0.208 0.209 0.192 0.161 0.162 0.180 0.209 0.145 0.179 0.174 0.158 0.174 0.158 0.174 0.146 0.196	G(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.217 0.207 0.217 0.207 0.217 0.207 0.217 0.202 0.213 0.2046 0193 0.202 0.201 0.218 0.208 0.217 0.208 0.217 0.182 0.193 0.205 0.206 0.190 0.181	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.241 0.222 0.219 0.188 0.200 0.206 0.200 0.221 0.218 0.204 0.205 0.235 0.231 0.229 0.208 0.206 0.229 0.241 0.206 0.207 0.210 0.229 0.208 0.206 0.229 0.208 0.200 0.209 0.208 0.200 0.209 0.208 0.200 0.209 0.208 0.200 0.209 0.208 0.200 0.209 0.208 0.200 0.209 0.206 0.200 0.206 0.200 0.206 0.207 0.207 0.207 0.207 0.226 0.207 0.227 0.226 0.227 0.207 0.227 0.226 0.227 0.227 0.227 0.227 0.227 0.227 0.227 0.227 0.227 0.227 0.227 0.226 0.227 0.227 0.227 0.226 0.227 0.227 0.227 0.226 0.227 0.226 0.227 0.226 0.227 0.226 0.227 0.226 0.227 0.226 0.227 0.226 0.227 0.226 0.227 0.226 0.227 0.226 0.227 0.226 0.227 0.226 0.227 0.226 0.227 0.226 0.227 0.226 0.227 0.227 0.227 0.226 0.227 0.226 0.227 0.227 0.226 0.227 0.227 0.226 0.227 0.226 0.227 0.227 0.226 0.227 0.277 0.27	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162 -0.440 -0.440 -0.440 -0.417 0.173 -0.195 -0.194 0.375 -0.194 0.375 -0.194 0.375 -0.194 0.375 -0.194 0.375 -0.194 0.375 -0.194 0.375 -0.194 0.375 -0.194 0.375 -0.194 -0.182 -0.215 0.008 -0.141 -0.033 0.036 0.147	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195 -0.470 -0.470 -0.470 -0.470 -0.402 -0.002 -0.199 -0.288 0.435 -0.247 -0.193 -0.186 0.111 -0.145 0.084 0.004 0.140	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.593 -0.593 -0.593 -0.593 -0.580 0.048 -0.197 -0.284 0.266 -0.224 -0.174 -0.460 -0.150 .312 0.210 -0.213 0.217	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312 -0.588 -0.588 -0.590 0.001 -0.214 -0.318 0.348 -0.257 -0.185 -0.412 -0.067 -0.282 -0.155 -0.159 0.237	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42 H43 H44 H45 H46 H47 H48 H49 H50 H51 H52 H55 H56 N57	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.152 0.144 0.152 0.144 0.144 0.129 0.130 0.174 0.129 0.130 0.151 0.152 0.148 0.176 0.152 0.148 0.176 0.123 0.150 0.145 0.131 0.121 0.168 0.251	(d)/ 6-3110 HF6-31 1 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.217 0.220 0.218 0.208 0.209 0.192 0.161 0.162 0.180 0.209 0.145 0.179 0.174 0.158 0.174 0.158 0.174 0.154 0.174 0.196 0.240	G(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.217 0.207 0.217 0.207 0.217 0.207 0.217 0.202 0.201 0.202 0.201 0.202 0.201 0.218 0.208 0.217 0.208 0.217 0.182 0.193 0.205 0.206 0.190 0.181 0.229	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.241 0.222 0.219 0.188 0.200 0.206 0.201 0.210 0.229 0.241 0.229 0.205 0.201 0.229 0.208 0.206 0.229 0.208 0.200 0.209 0.208 0.200 0.209 0.208 0.200 0.209 0.208 0.200 0.209 0.208 0.200 0.209 0.206 0.200 0.206 0.200 0.206 0.200 0.206 0.206 0.207 0.207 0.236 0.236 0.236 0.207 0.236 0.23	
	Table I C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25	e 7: The c DFT6-31 0.564 0.846 0.028 0.135 -0.163 -0.190 -0.195 -0.204 -0.183 -0.162 -0.440 -0.440 -0.440 -0.417 0.173 -0.195 -0.194 0.375 -0.194 0.375 -0.194 0.375 -0.182 -0.215 0.008 -0.141 -0.033 0.036 -0.147 0.208	calculated HF6-31 0.644 1.097 0.099 -0.038 -0.184 -0.224 0.062 -0.244 -0.209 -0.195 -0.470 -0.470 -0.470 -0.470 -0.470 -0.422 -0.002 -0.199 -0.288 0.435 -0.247 -0.193 -0.186 0.111 -0.145 0.084 0.004 -0.149 0.292	mulliken char DFT6-311 0.466 0,595 -0.064 -0.009 -0.162 -0.209 0.107 -0.224 -0.205 -0.298 -0.593 -0.593 -0.593 -0.593 -0.580 0.048 -0.197 -0.284 0.266 -0.224 -0.266 -0.224 -0.174 -0.460 -0.150 .312 0.210 -0.213 -0.317 0.25 %	ges datas HF6-311 0.592 0.790 0.040 -0.062 -0.177 -0.229 0.072 -0.249 -0.226 -0.312 -0.588 -0.590 0.001 -0.214 -0.318 0.348 -0.257 -0.185 -0.412 -0.067 -0.282 -0.155 -0.159 -0.287 0.200	B3LY H33 H34 H35 H36 H37 H38 H39 H40 H41 H42 H43 H44 H45 H46 H47 H48 H49 H50 H51 H52 H53 H54 H55 H56 N57	P/HF 631G DFT6-31 0.144 0.144 0.152 0.144 0.152 0.144 0.152 0.144 0.174 0.129 0.130 0.174 0.129 0.130 0.143 0.170 0.151 0.152 0.148 0.176 0.123 0.150 0.145 0.131 0.121 0.168 -0.351 0.270	(d)/ 6-3110 HF6-31 1 0.158 0.163 0.158 0.163 0.173 0.220 0.217 0.220 0.217 0.220 0.218 0.208 0.209 0.192 0.161 0.162 0.180 0.209 0.145 0.179 0.174 0.158 0.154 0.174 0.158 0.154 0.174 0.196 -0.349 0.582	G(d) of the DFT6-311 0.201 0.207 0.217 0.207 0.217 0.207 0.217 0.207 0.217 0.207 0.217 0.202 0.201 0.218 0.208 0.217 0.182 0.193 0.205 0.206 0.190 0.181 0.229 -0.227	molecule HF6-311 0.203 0.210 0.221 0.218 0.204 0.265 0.269 0.228 0.235 0.231 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.241 0.222 0.219 0.188 0.200 0.206 0.201 0.229 0.241 0.222 0.219 0.241 0.222 0.219 0.265 0.229 0.241 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.241 0.222 0.219 0.206 0.229 0.208 0.206 0.229 0.221 0.229 0.208 0.206 0.229 0.228 0.206 0.229 0.229 0.208 0.206 0.229 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.206 0.229 0.208 0.200 0.229 0.208 0.200 0.229 0.208 0.200 0.209 0.206 0.200 0.206 0.207 0.207 0.236 0.236 0.236 0.236 0.236 0.207 0.236 0.23	

H27	0.151	0.228	0.211	0.239	N59	-0.437	-0.645	-0.380	-0.492
H28	0.127	0.203	0.192	0.219	N60	-0.312	-0.317	-0.206	-0.278
H29	0.129	0.204	0.192	0.218	N61	-0.393	-0.596	-0.300	-0.435
H30	0.140	0.218	0.203	0.228	O62	-0.551	-0.664	-0.405	-0.544
H31	0.132	0.174	0.206	0.217	063	-0.507	-0.652	-0.340	-0.454
H32	0.152	0.171	0.216	0.219	O64	-0.408	-0.625	-0.339	-0.462
-									

3.5 Frontier molecular orbital analysis

Frontier molecular orbitals (FMO) (Figs. 6,7) determines the electric, electronic transitions, optical properties and kinetic stability [19]. HOMO-LUMO energy of compound was calculated using B3LYP/DFT 6-31G (d)/ 6-311G (d) levels of theory. The HOMO-LUMO energy gap is 4.33 e.v. for B3LYP/DFT basis set and 10.79 e.v. for B3LYP/HF 6-31G (d) basis set and 4.18 e.v. for B3LYP/DFT basis set and 10.4 e.v. for B3LYP/HF 6-311G (d) (figure 4). Using HOMO-LUMO energy gap electronegativity (χ), electron affinity (A), global hardness (η), softness (S), chemical potential (μ), ionization potential (I), chemical potential (Pi), electrophilic index (ω), Nucleophilic index (IP) for the compound was calculated. These all properties are calculated as follows [20-22]:

η = (I - A)/2, μ = -(I + A)/2, χ = (I + A)/2, Pi = χ, ω = μ² / 2η

In this formula, I and A symbolised ionization potential and electron affinity of the compound, which are virtually obtained from HOMO and LUMO energies. Where I = $-E_{HOMO}$ and A= $-E_{LUMO}$ showed as per Janak theorem [23] and Perdew et al. [24]. The HOMO-LUMO energy gap in compound is 4.31; 10.79 e.v. All these parameters such as global hardness (η) chemical potential (μ), the global electrophilicity index (ω), electronegativity (χ), ionization potential (I), chemical potential (Pi), electrophilic index(ω), Nucleophilic index (IP) have been calculated for the target compound using 6-31G (d) basis set and are showed in table 8.

Figure 7: HOMO-LUMO energy of the molecule (6-31G)

Figure 8: HOMO-LUMO energy of the molecule (6-311G)	
Table 8: The calculated electronic structure parameters of the molecular	le

			6-310	6(d)			6-31	lG(d)	
		Hartree	ev	kcal/mol	KJ/mol	Hartree	ev	kcal/mol	KJ/mol
	LUMO	-0.05299	-1.44189	-33.2514	-139.125	-0.06155	-1.67482	-38.6228	-161.6
	HOMO	-0.21245	-5.78091	-133.313	-557.787	-0.22057	-6.00186	-138.408	-579.107
Α	electron affinity	0.05299	1.44189	33.2514	139.125	0.06155	1.67482	38.6228	161.6
	ionization								
Ι	potential	0.21245	5.78091	133.313	557.787	0.22057	6.00186	138.408	579.107
ΔE	energy gap	0.15946	4.33902	100.062	418.662	0.15902	4.32705	99.7855	417.507
χ	electronegativity	0.13272	3.6114	83.2822	348.456	0.14106	3.83834	88.5156	370.353
	chemical								
Pi	potential	-0.13272	-3.6114	-83.2822	-348.456	-0.14106	-3.83834	-88.5156	-370.353
	electrophilic								
ω	index	0.000702206	0.01911	0.44064	1.84364	0.000791042	0.02152	0.49638	2.07688
	Nucleophilic								
IP	index	-0.01058177	-0.28794	-6.64009	-27.7824	-0.01121568	-0.30519	-7.03787	-29.4468
	molecular								
S	softness	12.5423	341.286	7870.35	32929.9	12.5770	342.23	7892.13	33021
	molecular								
η	hardness	0.07973	2.16951	50.0308	209.331	0.07951	2.16352	49.8928	208.754

3.6 Investigation of thermodynamics properties of compound

Thermodynamics parameters of molecule calculated with B3LYP/DFT/HF 631G (d) and B3LYP/DFT/HF 6311G (d) basis sets (table 9). Thermodynamic parameters of molecule (such as thermal energy, zero-point, vibrational energies (ZPVE), heat capacity, entropy, rotational temperatures and rotational constants) were calculated 298.150 K and 1 atm of pressure. In addition to, the standard thermodynamic functions of heat capacity CV^0 , entropy S^0 and enthalpy H^0 were obtained at the B3LYP/DFT/HF 631G(d) and the B3LYP/DFT/HF 6311G(d) levels.

Rotational temperatures (Kalvin)	DFT6 21C	HF6 31C	DFT6 311C	HF6_311C
	0.00614	0.00611	0.00500	0.00400
A	0.00014	0.00011	0.00399	0.00009
D C	0.00301	0.00308	0.00303	0.00307
C Retational constants (CUZ)	0.00215	0.00219	0.00215	0.00218
Rotational constants (GHZ)	0.12904	0 10721	0.12495	0 12(92
A	0.12804	0.12/31	0.12485	0.12682
В	0.06264	0.06426	0.06318	0.06406
	0.04489	0.04572	0.04480	0.04553
Thermal Energies E(kcal/mol)	0.000	0.000	0.000	0.000
Translational	0.889	0.889	0.889	0.889
Rotational	0.889	0.889	0.889	0.889
Vibrational	355.683	379.853	354.008	377.792
Total	357.460	381.631	355.785	379.569
Thermal Capacity CV(cal/mol-K)				
Translational	2.981	2.981	2.981	2.981
Rotational	2.981	2.981	2.981	2.981
Vibrational	111.939	103.312	112.198	103.673
Total	117.900	109.274	118.160	109.635
Entropy S(cal/mol-K)				
Translational	44.196	44.196	44.196	44.196
Rotational	38.032	37.994	38.051	38.005
Vibrational	128.968	121.478	127.992	121.765
Total	211.196	203.669	210.239	203.967
Zero-point correction	0.538645	0.578972	0.536002	0.575637
(Hartree/Particle)				
Thermal correction to Energy	0.569649	0.608167	0.566980	0.604882
Thermal correction to Enthalpy	0.570593	0.609111	0.567924	0.605826
Thermal correction to Gibbs Free	0.470247	0.512342	0.468033	0.508915
Energy				
Sum of electronic and zero-point	-1470.175959	-1460.960727	-1470.504987	1461.249451
Energies				
Sum of electronic and thermal	-1470.144955	-1460.931532	-1470.474009	1461.220206
Energies				
Sum of electronic and thermal	-1470.144011	-1460.930587	-1470.473065	1461.219262
Enthalpies	-1470.244357	-1461.027357	-1470.572956	1461.316173
Sum of electronic and thermal Free				
Energies				
Zero-point vibrational energy	338.00493	363.31015	336.34649	361.21756
(Kcal/mol)				

	μ_{x}	μ_y	μ_{z}	μ _{Toplam}
6-31G Dft	1.7624	2.2748	3.1793	4.2882
Hf	3.6656	5.2544	1.6045	6.6045
6-311G Dft	1.9693	2.6717	3.2927	4.6752
Hf	4.8302	0.5011	0.3110	4.8660

 Table 10: The calculated dipole moments datas of the molecule

Table 11: The calculated total energy datas B3LYP/HF of the molecule

Enerji (a.u.)	DFT	HF
6-31 G	-1470.7146	-1461.5398
6-311 G	-1471.0409	-1461.8250

The MEP of the molecule

Total density of the molecule

The Electron Density of the molecule

The Electrostatic Potential of the molecule

The ESP of the molecule Figure 8: The calculated molecular surfaces of the molecule (6-31G(d))

4. Conclusion

In this work, electronic, geometric and spectroscopic parameters of molecule are calculated by Density Functional Theory (DFT) and Hartree-Fock (HF) methods with the 631G(d) and 6311G(d) basis sets of the program package Gaussian G09W. Obtained spectroscopic parameters are compared with experimental data. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), bond angles, bond lengths, mulliken charges, E_{LUMO} - E_{HOMO} energy gap (ΔEg), electronegativity (χ), electron affinity (A), global

hardness (η), softness (σ), ionization potential (I), total energy of the molecule, thermodynamics properties, dipole moments were calculated with B3LYP/HF/DFT 631G (d) and 6311G (d) basis sets. Furthermore, IR vibrational frequencies and IR spectrums were obtained. The IR data was found positive. This result showed that the structure of the compound was stable. The chemical shifts in the calculations ¹H-NMR and ¹³C-NMR and IR vibrational frequencies are found to be compatible with the experimental data. Theoretical and experimental carbon and proton chemical shifts ratios between according to R² and a, b values, linear a correlation were observed. Result, obtained all data with the B3LYP/HF/DFT 6-31G(d) and 6-311G (d) basis sets were compared with each other.

References

- 1. Schiff, H. (1864). Mittheilungen aus dem universitatslaboratorium in Pisa: Eine neue reihe organischer basen. Justus Liebigs, *Ann. Chem.*, 1311: 18-119.
- 2. Yamada, S. (1999). Coord. Chem. Rev. 190: 537-555.
- 3. Cozzi, P.G. (2004). Chem. Soc. Rev., 33:410-421.
- 4. Akiyama, T., Itoh, J., Yokota, K., Fuchibe, K. (2004). 43: 1566-1568.
- 5. Gupta, K.C., Sutar, A.K. (2008). Coord. Chem. Rev. 252: 1420-1450.
- 6. Sakmar, T.P., Franke, R.R., Khorana, H.G., Natl, P. (1989). Acad Sci.USA, 8: 8309-8313.
- 7. Dharmaraj, N., Viswanathamurthi, P., Natarajan, K., Transit Metal Chem. (2001). 26: 105-109.
- 8. Pandeya, S.N., Sriram, D., Nath, G., De Clercq, E. (1999). Eur. J. Pharm. Sci. 9:25-31.
- 9. Gündüzalp, A.B., Ozsen, I., Alyar, H., Alyar, S., Ozbek, N. (2016). Biologically active Schiff bases containing thiophene/furan ring and their copper(II) complexes: synthesis,
- 10. spectral, nonlinear optical and density functional studies, J. Mol. Struct., 1120: 259-266 and references therein.
- 11. Melnyk, P. Leroux, V., Sergheraerta, C., Grellier, P. (2006). Design, synthesis and in vitro antimalarial activity of an acylhydrazone library, *Bioorg. Med. Chem. Lett.*, 16:31-35.
- 12. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X. et al. (2009). *Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT.*
- 13. Wolinski, K. Hilton, J.F. and Pulay, P.J. Am. Chem. Soc., (1990). 112: 512.
- 14. GaussView 5.0, Gaussian, Inc., Wallingford CT, (2009).
- 15. Merrick, J.P., Moran, D., Radom, L. (2007). An Evaluation of Harmonic Vibrational Frequency Scale Factors. *Journal of Physical Chemistry*, 111(45): 11683-11700.
- 16. Jamróz, M.H. (2004). Vibrational Energy Distribution Analysis: VEDA 4 program, Warsaw.
- Ocak, N., Çoruh, U., Kahveci, B., Şaşmaz, S., Vazquez-Lopez, EM., Erdönmez, A. (2003). 1- Acetyl-3-(p-chlorobenzyl)-4-(p- chlorobenzylidenamino)- 4,5-dihydro-1*H*-1, 2, 4- triazol-5-one. *Acta Cryst. Sec. E.* 59(6):750-752.
- Ustabas, R., Çoruh, U., Sancak, K., Ünver, Y., Vazquez-Lopez, EM. (2007). 1-(benzoylmethyl)-4-[(2,4-dichlorobenzylidene)amino]-3-(2- thienylmethyl)4,5-dihydro-1*H*-1,2,4-triazol-5-one. *Acta Cryst. Sec.* E.63:2982- 3051.
- 19. Mulliken, RS. (1955). Electronic Population Analysis on LCAO–MO Molecular Wave Functions I. J. Chem Phys. 23:1833–1840.
- 20. Fukui, K., Yonezawa, T., Shingu, H.J. (1952). A molecular orbital theory of reactivity in aromatic hydrocarbons, *J. Chem. Phys.* 20:722-725.
- 21. Parr, R. (1989). Density Functional Theory of Atoms and Molecules, Oxford University Press, New York.
- 22. Parr, R., Szentpaly, L., Liu, S. (1999). Electrophilicity index, J. Am. Chem. Soc. 121:1922-1924.
- 23. Ozdemir, N., Dayan, S., Dayan, O., Dinçer, M., Kalaycıoğlu, N. (2013). Experimental and moleculer modeling investigation of (E)-N-2[(2/hydroxybenzlidene)amino]phenyl)
- 24. benzenesulfonamide experimental and moleculer modeling investigation of (E)-N-2[(2/hydroxybenzlidene)amino]phenyl)benzenesulfonamide, *Mol. Phys.* 11 (6): 707-723.

- 25. Janak, J.F. (1978). Proof that ^δE/^δni=ε in density-functional theory, *Phys. Rev.* B 18: 7165.
- 26. Perdew, J.P., Parr, R.G., Levy, M., Balduz, Jr. J.L. (1982). Density-functional theory for fractional particle number: derivative discontinuities of the energy, *Phys. Rev. Lett.* 49:1691.

