The Pharmaceutical and Chemical Journal, 2016, 3(4):220-226

Available online <u>www.tpcj.org</u>

Research Article

ISSN: 2349-7092 CODEN(USA): PCJHBA

Phytochemical Investigation of Extracts of Ziziphus nummularia (Burm. F. Wight & Arn) Leaves and Fruits

Pooja Bagdi, Vinita Rathore

Department of Zoology, Science College, Mohanlal Sukhadia University, Udaipur

Abstract

Hydro-alcoholic extraction of leaves and fruits of *Ziziphus nummularia* were prepared by Soxhlet and Maceration Method. Phytochemical Screening was performed for both of the extracts. Extract were also analyzed by FT-IR and HPLC. The phytochemical screening of various extracts showed the presence of a Flavonoids, glycosides, tannins, Phenolic compounds and Saponins, whereas protein and amino acid are absent in the leaf extract of *Z. nummularia*. However the Saponins are present in leaf extract and are absent in fruit extract of *Z. nummularia*. Among all the extracts, *Ziziphus nummularis* Fruit Maceration (ZNFM) shows highest quantity of quercitin in HPLC analysis.

Keywords Phytochemical, Leaves, Fruits, Ziziphus nummularia, FT-IR, HPLC

Introduction

Ziziphus nummularia is a thorny small bush or a shrub 6-8 m in height belonging to family Rhamnaceae found throughout north western India, Pakistan and China [1]. The aerial and root barks, leaves, and fruits of Ziziphus species used in Indian system of medicine for the treatment of various diseases such as weakness, liver complaints, obesity, diabetes, skin infections, fever, diarrhea, insomnia and digestive disorders [2].

In the present work, hydro-alcoholic extraction of leaves and fruits of *Ziziphus nummularia* were prepared by Soxhlet and Maceration Method. Phytochemical Screening was performed for both of the extracts. Extract were also analyzed by FT-IR and HPLC.

Material and Methods

Plant Material: Ziziphus nummularia- Leaves and Fruits

In Rajasthan Ziziphus nummularia is widely distributed in Udaipur was collected from Aravali hill region of Udaipur, Rajasthan.

Preparation of Extracts

a. Hydro-alcoholic extraction of leaves and fruits will be done by continuous Soxhlet Method

The air dried leaves of Z. nummularia were powder using grinder. The 10gm powder was extracted with 100 ml of 70 % Hydroalchohol (30:70; Water: Ethanol) in a Soxhlet apparatus at 70°C till exhaustion. The obtained extract was concentrated under reduced pressure at 40°C [3-4].

b. Hydroalcoholic extraction of leaves and fruit by Maceration

10 gm of powder leaves and fruit of *Z. nummularia* were blended with 100ml of hydro-alcohol (30:70; water: alcohol) for 5-7 days with agitation at room temperature. After the extract was concentrated using rotator evaporator at 40°C under reduced pressure. Finally the extract were weighted and stored at -20°C till their usage in the different testes [5].

The Pharmaceutical and Chemical Journal

Phytochemical Screening

The crude extract was subjected to preliminary screening for the evaluation of major phytochemical constituents such as Tannin and Phenolic compounds, Proteins and amino acid, Flavonoids, Saponins and Glycosides as per reported methods [6-7].

FT-IR Analysis

Dried powder of different solvent extracts of each plant materials were used for FTIR analysis. 1mg of the dried extract powder of *Ziziphus nummularia* was encapsulated in 99 mg KBr pellet, in order to prepare translucent sample discs. The powdered sample of each plant specimen was loaded in FTIR spectroscope (BRUKER), with a Scan range from 400 to 4000 [8-10].

HPLC Analysis of Extracts

The HPLC (Shimadzu, Kyoto, Japan) instrument was equipped with two LC-10 ATVP pumps, SPD-10AVP UV-Visible detector, Rheodyne injector with a 50 μ L loop. The results were acquired and processed using Shimadzu LC-solution version 6.42 software for data acquisition and processing.

Moblie phase: 2% v/v acetic acid (solvent A) and methanol/acetonitrile (40/15, v/v) mixture (solvent B) under the following gradient program: 0-8 min 70% A, 8-19 min 60% A and 19-30 min 50% A.

Flow rate: 0.6 ml/min.

Absorption maxima: 270 nm

Injection Volume: 20µl

Column: Waters C18 (150mm \times 3.9 mm I.D., 5 μ m)

Diluent: ACN

Procedure: 10 mg each sample was accurately weighed and put in to 2 ml tube and add 1 ml of diluents and sonicated for 20 min. filtered with $0.22 \mu m$ membrane filter and run in HPLC.

Results and Discussion

Extraction

Maceration and Soxhlet method was used for the extraction of fruit and leaves of Z. nummularia. After extraction each extract was weighted.

Table 1: weight of each extract after extraction				
S. No.	Method	Part Used	Weight Taken	Final Weight of Extract
1.	Maceration	Leaves	10 gm	0.5141 gm
		Fruits	10 gm	1.0451 gm
2.	Soxhlet	Leaves	10 gm	0.5760 gm
		Fruits	10 gm	3.8953 gm

Table 1: Weight of each extract after extraction

Preliminary Phytochemical Screening of Z. nummularia leaf Extract

On preliminary phytochemical analysis of *Z. nummularia* (Maceration and Soxhlet Process) (Hydroalcoholic leaf extract) showed the presence of Flavonoids, Saponins, Glycosides, Tannins, and Phenolic compound. Protein and amino acid are absent in the both extract.

S. No.	Chemical Test	Test Results			
		Maceration Process		Soxhlet Process	
		Leaf Extract	Fruit Extract	Leaf Extract	Fruit Extract
1.	Flavonoids (Lead acetate Test)	+ve	+ve	+ve	+ve
2.	Tannins (Ferric Chloride Test)	+ve	+ve	+ve	+ve
3.	Glycosides (Con. H ₂ SO ₄ Test)	+ve	+ve	+ve	+ve
4.	Saponins (Foam Test)	+ve	-ve	+ve	-ve
5.	Proteins (Biuret test)	-ve	-ve	-ve	-ve
6.	Amino acid (Ninhydrin Test)	-ve	-ve	-ve	-ve
7.	Phenols (Ferric Chloride Test)	+ve	+ve	+ve	+ve

FT-IR Analysis of Extracts

The FTIR spectrum of leaf and fruit extracts (prepared in hydroalcohol; 70:30; alchohol:water) of *Z. nummularia* given in Figures 1 to 4. The data on the peak values and the probable functional groups (obtained by FTIR analysis) present in the leaf and fruit extracts of *Z. nummularia* presented in Tables 3.

Figure 1: FT-IR of Leaf extract of Z. nummularia by Maceration Process

Figure 2: FT-IR of Fruit extract of Z. nummularia by Maceration Process

Figure 3: FT-IR of Leaf extract of Z. nummularia by Soxhlet Process

Figure 4: FT-IR of Leaf extract of Z. nummularia by Soxhlet Process

S. No.	Extraction Process	Observed	Observation	Functional Group
		Frequency (cm ⁻¹)		
1.	Maceration	3616.20	O-H stretch, Free hydroxyl	Alcohols, Phenols
	(Leaf Extract)	3240.51	O-H stretch, H-Bonded	Alcohols, Phenols
		2944.59, 2885.99	C-H stretch,	Alkanes
		2827.20	H-C=O:C-H	Aldehydes
		1756.33, 1687.58	C=O stretch	Carboxylic acids
		1615.22	N-H bend	Primary amines
		1511.08	N-O	Nitro compounds
		1453.76	C-C stretch (in rings)	Aromatics
		1208.95	C-N stretch	Aliphatic amines
		806.51, 663.34	C-Cl	Alkyl halides
		550.33, 525.64	C-Br or I	Alkyl halides
2.	Maceration	3266.61	O-H stretch, H-Bonded	Alcohols, Phenols
	(Fruit Extract)	2885.99	C-H stretch	Alkanes
		1747.11	C=O stretch	Carboxylic acids
		1616.36	N-H bend	Primary amines
		1509.36	N-O	Nitro compounds
		1399.33	C-H stretch (in rings)	Aromatics
		1216.03	C-N stretch	Aliphatic amines
		1147.89	C-H wag (CH_2X)	Alkyl halides
		1023.10	C-N stretch	Aliphatic amines
		911.56, 771.39	C-Cl stretch	Alkyl halides
		519.40	C-Br or I stretch	Alkyl halides
3.	Soxhlet	3678.07, 3617.21	O-H stretch, Free hydroxyl	Alcohols, Phenols
	(Leaf Extract)	3227.84	O-H stretch, H-Bonded	Alcohols, Phenols
		2887.42	C-H stretch	Alkanes
		1752.89,1685.71	C=O stretch	Carboxylic acids
		1647.80	N-H bend	Primary amines
		1548.79, 1509.98	N-O	Nitro compounds
		1255.57	C-0	Alcohols, ethers, esters,
				carboxylic acids
		1181.03, 1009.16	C-N stretch	Aliphatic amines
		862.03, 794.04	C-Cl	Alkyl halides
		661.81, 553.69, 528.92,	C-Br or I	Alkyl halides
		522.19		
4.	Soxhlet	3270.26	O-H stretch, H-Bonded	Alcohols, Phenols

Table 3: FT-IR analysis of Leaf extract of Z. nummularia by Maceration Process

(Fruit Extract)	2889.53	C-H stretch,	Alkanes
	1747.25	C=O stretch	Carboxylic acids
	1617.69	N-H bend	Primary amines
	1509.36	N-O	Nitro compounds
	1398.74	C-C stretch (in rings)	Aromatics
	1217.44	C-N stretch	Aliphatic amines
	1150.74	C-H wag (CH ₂ X)	Alkyl halides
	1026.55	C-N stretch	Aliphatic amines
	911.25, 813.95, 771.73	C-Cl stretch	Alkyl halides
	662.89, 620.90, 572.30,	C-Br or I stretch	Alkyl halides
	523.02		

HPLC Analysis of Extracts

According to HPLC analysis of all extract the area under curve (AUC) of ZNLS, ZNFM, ZNFM and ZNLM was 16.66229 ±0.932986, 12.97792±0.162205, 533.4347±7.685162 and 45.17005±0.324734 respectively. Above all these extract ZNFM shows highest quantity of quercitin in HPLC analysis.

Table 5: HPLC analysis of Extracts			
Extract Name	Id	Quercetin (µg/ml)	
Ziziphus nummularis Leaf Soxhlet	ZNLS	16.66229 ±0.932986	
Ziziphus nummularis Fruit Soxhlet	ZNFS	12.97792±0.162205	
Ziziphus nummularis Fruit Maceration	ZNFM	533.4347±7.685162	
Ziziphus nummularis Leaf Maceration	ZNLM	45.17005±0.324734	

Figure: 3 Chromtogram of different extraction sample (A) ZNLS, (B) ZNFM (C) ZNFS (D) ZNLM

Conclusion

The phytochemical screening of various extracts showed the presence of a Flavonoids, glycosides, tannins, Phenolic compounds and Saponins, whereas protein and amino acid are absent in the leaf extract of *Z. nummularia*. However the Saponins are present in leaf extract and are absent in fruit extract of *Z. nummularia*. FT-IR analysis all Extracts was carried out. In FT-IR analysis each extract showed the characteristic peak in the range of 400-4000. Among all the extracts, *Ziziphus nummularis* Fruit Maceration (ZNFM) shows highest quantity of quercitin in HPLC analysis.

References

- 1. Srivastava SK and Chauhan JS. Chemical examination of the whole plant of Zizyphus nummularia. Planta Medica. 32(4): 384-7, 1977.
- 2. Kirtikar KR and Basu BD. Indian Medicinal Plants. Allahabad: Published by Basu LM;2(2):1361-1363, 1984.
- James Redfern, Malcolm Kinninmonth, Dariel Burdass, and Joanna Verran (2003); Using Soxhlet Ethanol Extraction to Produce and Test Plant Material (Essential Oils) for Their Antimicrobial Properties. J Microbiol Biol Educ. 2014 May; 15(1): 45–46.
- 4. Vikas Thakur, ManjushaChoudhary, Ankur Garg,Nitesh Choudhary, Ashwani Jangra, Vikaas Budhwar (2015); Evaluation of a Hydroalcoholic Extract of the Leaves from the Endangered Medicinal Plant gloriosa superba linn. (colchicaceae) for its Potential Anti-diabetic Effect. *iMedPub Journals*.2015; 7:6-8]
- 5. Mahbubeh Setorki (2016); Effect of hydro-alcoholic extract of Ziziphus spina-christi against scopolamineinduced anxiety in rats. *Bangladesh J Pharmacol*. 2016; 11: 421-427.
- 6. Shahla Najafi. Phytochemical screening and antibacterial activity of leaf Extract of Ziziphus mauritiana Lam. *International Research Journal of Applied and Basic Sciences* (10):3274-3276.

- Kokate CK, Purohit AP, Gohale SB (2003). Pharmacognosy. Nirali Prakashan Publishers, Pune, India, pp. 1-624.Harborne JB (1998) Phytochemical Methods- A guide to modern Techniques of plant analysis. Chapman and hall, London, U.K.
- 8. Wang, B., Zhu, H. T., Wang, D., Yang, C. R., Xu, M., & Zhang, Y. J. (2013). New spinosin derivatives from the seeds of Ziziphus mauritiana. *Natural products and bioprospecting*, 3(3), 93-98.
- 9. Ashok Kumar, R., & Ramaswamy, M. (2014). Phytochemical screening by FTIR spectroscopic analysis of leaf extracts of selected Indian medicinal plants. *International journal of Current Microbiology and applied Sciences*, 3(1), 395-406.
- 10. Omri, A., & Benzina, M. (2012). Characterization of activated carbon prepared from a new raw lignocellulosic material: Ziziphus spina-christi seeds. *Journal de la Société Chimique de Tunisie*, *14*, 175-183.

