Vertex version of pi index of polycyclic aromatic hydrocarbons $\mathbf{P A H}_{K}$

Mohammad R. Farahani ${ }^{1 *}$, Hafiz M. Rehman ${ }^{2}$, Muhammad K. Jamil ${ }^{3}$, Dae-Won Lee ${ }^{4}$
${ }^{1}$ Department of Applied Mathematics of Iran University of Science and Technology (IUST), Narmak, Tehran 16844,Iran
${ }^{2}$ Department of Mathematics \& Statistics, The University of Lahore, Lahore Pakistan.
${ }^{3}$ Department of Mathematics, Riphah Institute of Computing and Applied Sciences (RICAS),Riphah International University, Lahore, Pakistan
${ }^{4}$ Independent Scholar, Republic of Korea.

Abstract Let $G=(V, E)$ be a simple connected molecular graph. Khadikar et.al. introduced the PI index defined by $P I_{v}(G)=\sum_{e=u v \in E(G)}\left(n_{v}(e \mid G)+n_{u}(e \mid G)\right)$, where $n_{u}(e \mid G)$ is the number of vertices of G lying closer to u and $n_{u}(e \mid G)$ is the number of vertices of G lying closer to v. In this paper, we compute a closed formula of vertex PI index for Polycyclic Aromatic hydrocarbons.

Keywords Poly Aromatic Hydrocarbons PAHk; PI index; Cut Method; Orthogonal Cut.

Introduction

Let G be a simple molecular graph such that its vertices set $V(G)$ and edge set $E(G)$ corresponds to the atoms and bonds respectively. In graph theory, d_{v} is the degree of a vertex $v \in V(G)$, the number of adjacent vertices with v or the size of first neighborhood of vertex v. An edge $e=u v$ of graph G is attached between two vertices u and v. The distance between two vertices $u, v \in V(G)$ is equal to the number of edges on shortest path between them and it is denoted by $d(u, v)$.
A topological index is a numerical quantity associated with graph G. In mathematical chemistry, many topological indices are introduced so far. For any molecular graph G they are invariant on the graph automorphism.
H. Wiener [1] defined the notion of the Wiener index and defined as:

$$
W(G)=\sum_{\{u, v\} \in V(G)} d(u, v)
$$

I. Gutman et. al. [2,3] defined the vertex and edge versions of Szeged index, which are defined as

$$
\begin{gathered}
S z_{v}(G)=\sum\left[n_{u}(e \mid G) \times n_{v}(e \mid G)\right] \\
S z_{e}(G)=\sum_{e=u v \in E(G)}\left(m_{u}(e \mid G)+m_{v}(e \mid G)\right)
\end{gathered}
$$

where $n_{u}(e \mid G)$ and $m_{u}(e \mid G)$ represents the number of vertices of G lying closer to u than to v and $m_{u}(e \mid G)$ is the number of edges of G lying closer to u than to v, respectively, analogously $n_{v}(e \mid G)$ and $m_{u}(w \mid G)$.
Khadikar [4] and Ashrafi [8] proposed the edge and vertex versions of Padmakar-Ivan index (PI). These versions of PI index of a graph G is defined as:

$$
\begin{aligned}
& P I_{e}(G)=\sum_{e \in E(G)}\left(m_{u}(e \mid G)+m_{v}(e \mid G)\right) \\
& P I_{v}(G)=\sum_{e \in E(G)}\left(n_{u}(e \mid G)+n_{v}(e \mid G)\right)
\end{aligned}
$$

See the paper series for further details [4-9].

Polycyclic Aromatic Hydrocarbons

$P A H_{k}$ considered here is a family of such hydrocarbons containing several copies of benzene on circumference and is ubiquitous products. Polyaromatic hydrocarbons can be pictured as a small piece of graphene sheets with the free valances of dangling bond saturated by H vice versa, which can be interpreted as an infinite PAH molecule. These type of molecules has utilization in modeling graphite surface [10-16].

Main Result:

Let $P A H_{k}$ be the Polycyclic Aromatic Hydrocarbons ($\forall k \geq 1$). Then the $P I$ index of $P A H_{k}$ is equal to:

$$
P I_{v}\left(P A H_{k}\right)=18 k^{2}(k+1)\left[18 k^{2}+9 k-1\right]
$$

Proof. Consider the general representation of the Polycyclic Aromatic Hydrocarbons $P A H_{k}(\forall k \geq 1)$ as shown in Figure 1, we see that $P A H_{k}$ has $6 k^{2}+6 k$ vertices/atoms and $9 k^{2}+3 k$ edge/bonds $\left(\left|E\left(P A H_{k}\right)\right|\right)$, such that $6 k^{2}$ of its verities are Carbon atoms with three bonds and $6 k$ of its verities are Hydrogen atoms with one bond.

Figure 1: All orthogonal cuts of $P A H_{k}$.
Our aims is to compute the PI index of the Polycyclic Aromatic Hydrocarbons $P A H_{k}$. So, we cut $P A H_{k}$ and see that for an arbitrary edge cut $e=u v\left(\epsilon E\left(P A H_{k}\right)\right)$, there is an orthogonal cut $C(e)$.
One can see that for $i^{\text {th }}$ orthogonal cut $C_{i}(\forall i=0,1,2, \ldots, k)$; there are $k+i$ co-distance edges of $P A H_{k}$, and this imply that for all edge $e=u v \in C_{i} \subset E\left(P A H_{k}\right)$, there are $k+i$ repetitions of the vertex partitions $N_{u}\left(e \mid P A H_{k}\right)$ and $N_{v}\left(e \mid P A H_{k}\right)$ such that

$$
n_{v}\left(e \mid P A H_{k}\right)=\mid\left\{x \mid x \in V\left(P A H_{k}\right), d(v, x)<d(x, u)\right\}=i^{2}+2(k+1) i+k .
$$

From Figure 1, it's easy to see that for all edge $e=u v \in E\left(P A H_{k}\right), N\left(e \mid P A H_{k}\right)=\emptyset$ and $n\left(e \mid P A H_{k}\right)=0$. Thus

$$
\left|V\left(P A H_{k}\right)\right|=n\left(e \mid P A H_{k}\right)+n_{v}\left(e \mid P A H_{k}\right)+n_{u}\left(e \mid P A H_{k}\right) \text { and } n_{u}\left(e \mid P A H_{k}\right)=\left|V\left(P A H_{k}\right)\right|-n_{v}\left(e \mid P A H_{k}\right) .
$$

Therefore,

$$
n_{u}\left(e \mid P A H_{k}\right)=\left\{x / x \in V\left(P A H_{k}\right), d(u, x)<d(x, v)\right\}=6 k^{2}+5 k-i^{2}-2(k+1) i
$$

Now by using the above calculations, we can compute the PI index of the Polycyclic Aromatic Hydrocarbons $P A H_{k}(\forall k \geq 1)$ as follow:

$$
P I_{v}\left(P A H_{k}\right)=\sum_{e=u v \in E\left(P A H_{k}\right)} \quad\left(n_{v}\left(e \mid P A H_{k}\right)+n_{u}\left(e \mid P A H_{k}\right)\right)
$$

$$
\begin{aligned}
& =6 \sum_{e=u v \in C_{0}}(k)\left(n_{v}\left(e \mid P A H_{k}\right)+n_{u}\left(e \mid P A H_{k}\right)\right) \\
& +6 \sum_{e=u v \in C_{1}}(k+1)\left(n_{v}\left(e \mid P A H_{k}\right)+n_{u}\left(e \mid P A H_{k}\right)\right) \\
& +\ldots \\
& +6 \sum_{e=u v \in C_{k-1}}(2 k-1)\left(\left(n_{v}\left(e \mid P A H_{k}\right)+n_{u}\left(e \mid P A H_{k}\right)\right)\right. \\
& +3 \sum_{e=u v \in C_{k}}(2 k)\left(\left(n_{v}\left(e \mid P A H_{k}\right)+n_{u}\left(e \mid P A H_{k}\right)\right)\right. \\
& =6 k \sum_{e=u v \in C_{k}} V\left(P A H_{k}\right)\left|+6 \sum_{\substack{e=u v \in C_{i} \\
i=0,1, k-1}}(k+i)\right| V\left(P A H_{k}\right) \mid \\
& =6 V\left(P A H_{k}\right) \mid\left[k \sum_{e=u v \in C_{k}}+\sum_{\substack{e=u v \in C_{i} \\
i=0.1, \ldots-1}}(k+i)\right] \\
& =6\left(6 k^{2}+6 k\right)\left[k\left(9 k^{2}+3 k\right)+k^{2}+\frac{k(k-1)}{2}\right] \\
& =36 k(k+1)\left[\frac{18 k^{3}+6 k^{2}+3 k^{2}-k}{2}\right] \\
& =18 k(k+1)\left[18 k^{3}+9 k^{2}-k\right] \\
& =18 k^{2}(k+1)\left[18 k^{2}+9 k-1\right]
\end{aligned}
$$

And this completes the proof of theorem.

References

1. Hosoya, H. (1971). Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bulletin of the Chemical Society of Japan, 44(9), 23322339.
2. Gutman, I., \& Klavzar, S. (1995). An algorithm for the calculation of the Szeged index of benzenoid hydrocarbons. Journal of chemical information and computer sciences, 35(6), 1011-1014.
3. Gutman, I., \& Ashrafi, A. R. (2008). The edge version of the Szeged index. Croatica Chemica Acta, 81(2), 263-266.
4. Khadikar, P. V., Kale, P. P., Deshpande, N. V., Karmarkar, S., \& Agrawal, V. K. (2001). Novel PI indices of hexagonal chains. Journal of Mathematical Chemistry, 29(2), 143-150.
5. Khadikar, P. V., Karmarkar, S., \& Agrawal, V. K. (2001). A novel PI index and its applications to QSPR/QSAR studies. Journal of chemical information and computer sciences, 41(4), 934-949.
6. Khadikar, P. V., Karmarkar, S., \& Varma, R. G. (2002). On the estimation of PI index of polyacenes. Acta chimica slovenica, 49(4), 755-772.
7. John, P. E., Khadikar, P. V., \& Singh, J. (2007). A method of computing the PI index of benzenoid hydrocarbons using orthogonal cuts. Journal of mathematical chemistry, 42(1), 37-45.
8. Khalifeh, M. H., Yousefi-Azari, H., \& Ashrafi, A. R. (2008). Vertex and edge PI indices of Cartesian product graphs. Discrete Applied Mathematics, 156(10), 1780-1789.
9. Nadjafi-Arani, M. J., Fath-Tabar, G. H., \& Ashrafi, A. R. (2009). Extremal graphs with respect to the vertex PI index. Applied Mathematics Letters, 22(12), 1838-1840.
10. Jug, K., \& Bredow, T. (2004). Models for the treatment of crystalline solids and surfaces. Journal of computational chemistry, 25(13), 1551-1567.
11. Farahani, M. R. (2013). Some Connectivity Indices of Polycyclic Aromatic Hydrocarbons (PAHs). Advances in Materials and Corrosion, 2(1), 65-69.
12. Farahani, M. R. (2013). Zagreb Indices and Zagreb Polynomials of Polycyclic Aromatic Hydrocarbons PAHs. Journal of Chemica Acta, 2(2), 70-72.
13. Farahani, M. R. (2013). Hosoya, Schultz, Modified Schultz Polynomials and Their Topological Indices of Benzene Molecules: First Members of Polycyclic Aromatic Hydrocarbons (PAHs). International Journal of Theoretical Chemistry, 1(2), 09-16.
14. Farahani, M. R. (2014). Schultz and Modified Schultz Polynomials of Coronene Polycyclic Aromatic Hydrocarbons. International Letters of Chemistry, Physics and Astronomy, 13, 1-10.
15. Farahani, M.R., \& Gao W. (2015).The multiply version of Zagreb indices of a family of molecular graph "polycyclic aromatic hydrocarbons (PAHS)". Journal of Chemical and Pharmaceutical Research, 7(10), 535-539.
16. Farahani, M.R., \& Kanna, M.R.R. (2015) The Pi polynomial and the Pi index of a family hydrocarbons molecules. Journal of Chemical and Pharmaceutical Research, 7(11), 253-25.
17. Gao W., \& Farahani, M.R. (2015). The Theta polynomial $\Theta(\mathrm{G}, \mathrm{x})$ and the Theta index $\Theta(\mathrm{G})$ of molecular graph Polycyclic Aromatic Hydrocarbons PAHk. Journal of Advances in Chemistry, 12(1), 3934-3939.
18. Farahani, M. R. (2013). The Ediz Eccentric Connectivity index and the Total Eccentricity Index of a Benzenoid System. Journal of Chemica Acta, 2(1), 22-25.
19. Farahani, M. R. (2014). Augmented eccentric connectivity indices of a molecular graph. International Journal of Chemical Modeling, 6(1), 17
20. Farahani, M.R. (2012). Computing $\Theta(\mathrm{G}, \mathrm{x})$ and $\Pi(\mathrm{G}, \mathrm{x})$ Polynomials of an Infinite Family of Benzenoid. Acta Chim. Slov., 59, 965-968.
21. Farahani, M. R. (2013). Zagreb index, Zagreb Polynomial of Circumcoronene Series of Benzenoid. Advances in Materials and Corrosion, 2(1), 16-19.
22. Farahani, M. R. (2013). Computing Edge-PI index and Vertex PI index of circumcoronene series of benzenoid Hk by use of cut method. Int. J. Mathematical Modeling and Applied Computing, 1(6), 2635.
23. Farahani, M. R. (2012). The Application of Cut Method to Computing the Edge Version of Szeged Index of a Molecular Graph. Pacific Journal of Applied Mathematics, 6(4), 2014, 249-258.
