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Abstract Abiotic (cold, drought, heavy metals, salinity, wounding) and biotic (plant parasite organisms) stressors 

frequently inhibit plant growth and development. One of the most harmful plant parasite organisms, 

phytopathogenic fungi, can cause severe diseases and major yield losses in crops. By physically strengthening their 

cell walls through lignification, suberization, and the production of various defense-related enzymes, plants protect 

themselves against fungi. The defense-related enzymes -1, 3-glucanase, chitinases, polyphenol oxidases (PPO), 

phenylalanine ammonia-lyase (PAL), and peroxidases (POX) are the main focus of the study. 
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1. Introduction 

The eukaryotic group of living organisms known as fungi is very large and varied. Fungi have a variety of effects on 

plant growth and development. Plants and fungi that have mutualistic relationships produce more biomass, have 

higher survival rates, are healthier, and are more resistant to pathogen attacks. However, fungal pathogen infections 

can result in decreased agricultural crop plant yields and growth rates, making them significant economically [1]. 

Beginning when a spore or hyphae makes contact with the plant surface, a variety of factors affect that the fungal 

pathogen and host plant interact. The abilities of the organisms involved and the environment in which they interact 

determine how things proceed after contact. Rusts and powdery mildews are examples of biotrophic fungi that 

exploit the nutrients supplied by their live host and inflict little harm when they invade. However, in order to spread, 

necrotrophic fungi frequently destroy plant cells by secreting toxins and enzymes that break down cell walls. 

Numerous pathogenic fungi cause characteristic symptoms on their host plants, including but not limited to leaf 

spots, leaf curl, necrosis, blights, cankers, galls, rust, mildews, and epinasty [2].  

Plants have evolved efficient resistance mechanisms to deal with pathogen attack. Breaking through the host cell 

wall, the main physical barrier defending plants from microbial invasion, is one of a pathogen's main challenges. 

Plant cell walls serve as barriers against both abiotic and biotic stresses in addition to giving the body of the plant 

structure. In response to fungal pathogen attack, plants activate a variety of defense mechanisms. Preexisting 

chemical and physical barriers as well as inducible defense responses, such as the induction of defense-related 

enzymes that become active following pathogen infection, are examples of these mechanisms. 
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2. Defense-related enzymes 

All defense-related enzymes are pathogenesis-related (PR) proteins that are responsible for the development of 

disease resistance responses in plants. The enzymes phenylalanine ammonia-lyase (PAL), polyphenol oxidases 

(PPO), peroxidases (POX), chitinases, and -1, 3-glucanase are associated with plant defense. 

 

2.1 Phenylalanine Ammonia-Lyase (PAL) 

PAL (E.C.4.1.3.5) is primarily essential for plant disease resistance responses and is involved in the manufacture of 

phenolic secondary metabolites of antimicrobial nature compounds [3]. PAL is the primary enzyme in the 

manufacture of several secondary compounds associated to defense, such as phenols and lignins, and its presence in 

the metabolic activities of numerous higher plants has been proven [4]. Plant resistance to disease is associated to 

the synthesis of phenolic compounds in response to infection and their presence in the plant. Due to its crucial 

function in the production of phenylpropanoid, PAL is one of the enzymes in plant secondary metabolism that has 

been investigated the most [5]. PAL is an inducible enzyme that reacts to biotic (pathogens) and abiotic (UV 

radiation and low temperature) stresses [6]. There is research showing that changes in PAL activity occur during 

pathological events (Table 1). 

 

2.2 Polyphenol Oxidase (PPO) 

Plant polyphenol oxidases (PPOs, EC 1.14.18.1 or EC 1.10.3.2) are widely distributed and extensively researched 

oxidative enzymes, and for a long time, it has been known that these enzymes affect the changing the color of in 

diseased and damaged plant tissues. PPOs are nuclear-encoded enzymes of almost ubiquitous distribution in plants 

[7]. The oxygen-dependent oxidation of phenols to quinones is catalyzed by PPO [8]. It has often been proposed that 

PPOs play a role in plant defense against pests and pathogens due to their noticeable response products and 

induction by wounding and pathogen attack [9,10]. Plants react quickly to diseases, therefore there is immediate rise 

in PPO, indicating that antimicrobials are being synthesized to ward off the pathogens. Pathogen-induced PPO 

activity has been reported for several plant species (Table 1). 

Table 1: Studies of defense-related enzymes against phytopathogenic fungi in some plants. 

Defense-related 

proteins/enzymes  

Fungi species Plants References 

Phenylalanine ammonia-lyase Bipolaris sorokiniana Barley [36] 

Cercospora nicotianae Tobacco [37] 

Magnaporthe oryzae Rice [38] 

Rhizoctonia solani Rice [39,40] 

Polyphenol oxidase Acremonium zonatum Water hyacinth [41] 

Alternaria alternata, Colletotrichum 

capsici  

Pepper [42] 

Alternaria solani Tomato [9] 

Alternaria triticina Wheat [43] 

Ascochyta rabei Chickpea [44] 

Colletotrichum lagenarium Cucumber [45] 

Erysiphe necator Grapevine [46] 

Fusarium graminearum Wheat [47] 

Fusarium oxysporum f. sp. albedinis Date palm [48] 

Fusarium oxysporum f. sp. ciceri Chickpea [49] 

Fusarium oxysporum f. sp. cubense Banana [50] 

Fusarium oxysporum f. sp. lycopersici Tomato [51-53] 

Fusarium solani Eggplant [54] 

Hemileia vastatrix Coffee [55] 

Ramulispora sorghicola Sorghum [56] 
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Rhizoctonia spp. Alfalfa [57] 

Rhizoctonia solani Cowpea [58] 

Rhizoctonia solani Rice [39,40] 

Sclerospora graminicola Pearl millet [59] 

Sphaerotheca fuliginea Cucumber [60] 

Stemphylium vesicarium Onion [61] 

Ustilago tritici Wheat [62] 

Verticillium dahliae Olive [63] 

Verticillium dahliae, V. albo-atrum Pepper [64] 

Peroxidase Bipolaris sorokiniana Wheat [65] 

Colletotrichum gloeosporioides Townsville 

stylo 

[29,30] 

Colletotrichum lagenarium Cucumber [66] 

Erysiphe graminis f.sp. hordei Barley [28,67] 

Erysiphe necator Grapevine [46] 

Fusarium oxysporum f. sp. cubense Banana [68] 

Fusarium oxysporum f. sp. lycopersici Tomato [53] 

Hemileia vastatrix  Coffee [69] 

Magnaporthe grisea Rice [70] 

Neovossia indica Wheat  [71] 

Puccinia graminis f. sp. tritici  Wheat [72] 

Rhizoctonia solani Rice [39,40] 

Uromyces fabae Broad bean [73] 

Uromyces vignae Cowpea bean [74] 

Chitinase Alternaria alternata Tomato [75] 

 Alternaria brassicicola Arugula [76] 

 Botrytis cinerea Cucumber [77] 

 Colletotrichum falcatum Sugarcane [78] 

 Colletotrichum sp. Mango [79] 

 Erysiphe necator Grapevine [46] 

 Fusarium graminearum Wheat [80] 

 Fusarium oxysporum f. sp. ciceri Chickpea [81] 

 Giberella fujikuroi  Sugarcane [82] 

 Puccinia striiformis f. sp. tritici Wheat [83] 

 Puccinia triticina Wheat [84] 

 Rhizoctonia solani Rice [40,85] 

 Sclerotium rolfsii Peanut [79] 

 Sclerotinia sclerotiorum Rapeseed [86] 

β-1,3-Glucanase Alternaria alternata Tomato [75] 

 Alternaria brassicicola Arugula [76] 

 Colletotrichum falcatum Sugarcane [87] 

 Erysiphe necator Grapevine [46] 

 Magnaporthe oryzae Rice [88] 

 Sclerotinia sclerotiorum Beans [89] 

 Sporisorium scitamineum Sugarcane [90] 
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2.3 Peroxidase (POX) 

Peroxidases (POX, EC 1.11.1.7) play a key role in plant physiology by catalyzing the oxidoreduction of different 

substrates utilizing hydrogen peroxide. Numerous studies have indicated that POXs play roles in several plant 

defense responses, including lignification and suberization [11,12], crosslinking of cell wall proteins [13,14], xylem 

wall thickening [15)], generation of reactive oxygen species [16-18], hydrogen peroxide scavenging [19], 

phytoalexin synthesis [20], wound healing [21-23], antifungal activity of POX itself [24], and auxin metabolism [25-

27]. POXs help plants defend themselves against pathogens such as fungus [28-30]. Expression of peroxidase 

contributes to plant defense in two ways: passively (by strengthening barriers) or actively (by producing ROS to 

fend off attacking pathogens). Plant peroxidases, β-1,3-glucanases, and chitinases work together in the early phases 

of plant infection [31]. 

 

2.4 Chitinase 

A broad and diverse group of enzymes known as chitinases (E.C. 3.2.1.14) are also one of the key proteins 

connected to plant pathogenesis (PR) that breaks degrade chitin and strengthens plant defenses against disease-

causing agents that contain chitin [32]. Chitinases are enzymes that degrade chitin, the second-most prevalent 

structural polysaccharide in nature found in insect exoskeletons; they are also important components of fungal cell 

walls [33]. Chitinases have been proven to have significant antifungal efficacy against plant pathogenic fungi (Table 

1). 

 

2.5 β-1,3 Glucanase 

Multifunctional enzymes known as β-1,3 glucanases (E.C.3.2.1.39) are found in many living organisms, such as 

bacteria, fungus, and some invertebrate animals and plants [33]. Through its ability to degrade the cell walls of 

fungal pathogens, β-1,3-glucanase may play a role in plant defense against pathogens [34]. When overexpressed in 

many crops, the defense protein glucanase catalyzes glucan hydrolysis, which is an essential part of the pathogenic 

fungal cell wall and crucial to increased resistance to infections of fungal diseases [35]. In conclusion, studies have 

shown that chitinase and β-1,3-glucanase are important components of plant defense against phytopathogenic fungi. 

(Table 1). 

 

3. Conclusion 

In order to protect themselves from many threats including phytopathogenic fungi, plants have evolved a variety of 

defense mechanisms. Preexisting chemical and physical barriers as well as inducible defense responses, such as the 

induction of defense-related enzymes that become active following pathogen infection, are examples of these 

mechanisms. Changes in enzyme activity such as phenylalanine ammonia lyase, polyphenol oxidases, peroxidases, 

chitinases, and -1, 3-glucanase are mostly induced by contact between the pathogen and the host plant. Based on 

the findings of numerous completed and ongoing studies, more research is needed to stimulate resistance in the host 

plant and to bring the usage of defense-related enzymes against plant pathogens into practice. 
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