Available online <u>www.tpcj.org</u>

Research Article

ISSN: 2349-7092 CODEN(USA): PCJHBA

Development of a RP-HPLC Method for Simultaneous Estimation of Empagliflozin and Linagliptin

Pramod Swami*, Rakesh Goyal, Dilip Agrawal, Gaurav Bhaduka

*Research Scholar, Mahatma Gandhi College of Pharmaceutical Sciences, Jaipur, Rajasthan, India

Abstract This work outlines the creation of a novel Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) method for the quantitative detection of Empagliflozin and Linagliptin in bulk and tablet forms. The approach is quick, accurate, sensitive, and sensitive. The approach may be utilised for regular monitoring of Empagliflozin and Linagliptin in industry in the assay of bulk medication and dosage form due to the low percent relative standard deviation (% RSD) results in the precision research.

Keywords Empagliflozin, Linagliptin, RP-HPLC, Dosage form, Method Development

Introduction

$$\label{eq:second} \begin{split} & \mbox{Empagliflozin } \{(2S, 3R, 4R, 5S, 6R) - 2 - [4 - Chloro - 3 - [[4 - [(3S) - oxolan - 3 - yl] oxyphenyl] methyl] phenyl] - 6 - (hydroxymethyl) oxane - 3, 4, 5 - triol \} is a second se$$

Linagliptin $\{8-[(3R)-3-Aminopiperidin-1-yl]-7-(but-2-yn-1-yl)-3-methyl-1-[(4-methylquinazolin-2-yl)methyl]-3,7-dihydro-1$ *H* $-purine-2,6-dione} is used to treat type 2 diabetes (but not type 1) in conjunction with exercise and diet. Linagliptin is a dipeptidyl peptidase-4 inhibitor that works by increasing the production of insulin and decreasing the production of glucagon by the pancreas [3-4].$

Literature review revealed that few methods were described for the determination of Empagliflozin and Linagliptin alone or in combination with other drugs from pharmaceutical dosage forms and in human plasma including spectrophotometry, ultra-performance liquid chromatography (LC), LC–mass spectroscopy, and high-performance LC (HPLC) techniques [5-25].

The aim of present study to develop RP-HPLC method for simultaneous estimation of Empagliflozin and Linagliptin. Various literature assessments showed that there are numerous analytical method has been reported for the estimation of Empagliflozin and Linagliptin. There is a continued need for developing more efficient, sensitive, accurate and precise methods for the analysis of Empagliflozin and Linagliptin alone and in combination in dosage forms. So, the present work aims to develop assay method that is accurate, simple, rapid, economic, precise and reliable for the estimation of Empagliflozin and Linagliptin alone and in combination in dosage forms.

Experimental Work

The reference standards of empagliflozin and linagliptin were procured from Clearsynth, Hyderabad, India. Boehringer Ingelheim International branded tablet formulation Glyxambi® (empagliflozin 10 mg and linagliptin 5 mg) was purchased from local market.

Acetonitrile (HPLC-grade) was obtained from Merck Fine Chemicals, Mumbai, India. Analytical grade Sodium Hydroxide, Hydrochloric Acid and Hydrogen Peroxide were from SD Fine Chemicals, Hyderabad, India. Water was purified through Milli-Q[®] Integral water purification system. 0.45 µm nylon syringe filters were obtained from Chromatography World, Mumbai, India.

Instrumentation: Instruments used during the development and validation is given in the following table. Detailed instrumentation of the HPLC and PDA detector is given in the introduction.

Preparation of Solutions

Buffer (pH 2.16): 1.0 mL of ortho phosphoric acid, 85% solution was transferred into a 1000 mL of volumetric flask. The volume was made up with water and mixed well.

Mobile Phase: The above buffer solution (pH 2.16) was mixed with HPLC grade acetonitrile in a ratio of 45:55 V/V and degassed. This mixture was used as the mobile phase.

Diluent: Acetonitrile and water were mixed in 45:55 V/V ratio and mixed well.

Standard drug solution (Stock and working): 10 mg of empagliflozin and 5 mg of linagliptin reference standards were weighed into a 10 mL volumetric flask. About three fourths volume of the diluent was added it and sonicated for 10 min. The volume was made up with the diluent and mixed well. This solution was used as the stock standard solution (1 mg/mL of empagliflozin and 0.5 mg/mL of linagliptin).

2.0 mL of the above stock solution was transferred into a 20 mL volumetric flask and made up the volume with the diluent and mixed well. This solution was used as a working standard solution (100 μ g/mL of empagliflozin and 50 μ mg/mL of linagliptin).

Formulation Sample Solution: 20 tablets were weighed, and the average weight of the tablet was calculated. Tablets were pulverized using a motor.

A quantity of powder equivalent to one tablet was weighed and transferred into a 10 mL volumetric flask. Around 7 mL of the diluent was added to the volumetric flask and sonicated for around 10 min. The volume was made up with the diluent and mixed well. This solution was used as the stock sample solution (1.0 mg/mL of empagliflozin and 0.5 mg/mL of linagliptin).

An aliquot of the sample stock solution was filtered through a 0.45 μ m nylon syringe filter. 2.0 mL of the filtrate was transferred into a 20 mL volumetric flask. The volume was made up with the diluent and mixed well. The final theoretical concentrations of empagliflozin and linagliptin were 100 μ g/mL and 50 μ g/ml of respectively.

Preparation of sample solutions for forced degradation studies: The final degradation solution concentrations were 100 μ g/mL and 50 μ g/mL of empagliflozin and linagliptin respectively. (Refer to page number 29 in the introduction (chapter-1) for preparation of the samples for forced degradation studies).

1 01

Optimized chromatographic conditions			
T 11 4	0	. •	

Table 1: Optimized Chromatographic conditions							
Column	Thermo Scientific [™] Hypersil [™] ODS C18						
	(150 mm x 4.6 mm; 5µ)						
Mobile phase	0.1% Ortho phosphoric acid in water - Acetonitrile in45:55 V/V						
Volume of injection	10 μL						
Flow rate	1.0 mL/min						
Sample temperature	25°C						
Column temperature	30°C						
Wavelength	257 nm						
Run time	6 min						
Retention time	Empagliflozin: 2.44 min						
	Linagliptin: 3.27 min						

Validation of the Developed Method

The objective of validation of an analytical method is to verify the characteristics of the proposed method suitability for its intended purpose. After developing a suitable method, it was validated for accuracy (recovery), linearity, specificity, ruggedness, precision, robustness, limit of quantification and limit of quantification.

System suitability: The standard solution was prepared as per the proposed method and injected into the HPLC system. The results of the system suitability assessment for initial evaluation study parameters were given in figure 1. Percent relative standard deviation (% RSD) of 0.7 % indicates good system precision. System suitability was established before running the sample for all the validation parameters.

Figure 1: Representative chromatogram and relevant system suitability data

Method precision: The precision of the proposed method was evaluated by performing six independent assays of the test sample preparation and calculating the % RSD. The intermediate precision of the proposed method was checked by performing the same procedure on a different day under the same experimental conditions. The % RSD

was found to be below 2.0 % which indicates the proposed method was precise. Data obtain from precision experiments are given in Table 2.

			% Assay	Y
Sample number	Empagliflozin		Linagli	ptin
	Day 1	Day 2	Day 1	Day 2
1	100.058	100.456	99.218	100.359
2	99.674	100.100	98.175	100.103
3	99.045	100.080	98.664	99.889
4	100.141	100.202	99.348	100.142
5	99.666	100.131	99.468	100.805
6	99.007	100.074	98.880	99.860
Average	99.598	100.174	98.959	100.193
SD	0.484	0.146	0.487	0.351
%RSD	0.49	0.15	0.49	0.35

Table 2: Precision results of empagliflozin and linagliptin

Specificity: Interference with the diluent was evaluated by injecting the diluent into HPLC as per the proposed method. No peaks were found except for the solvent front peaks.

Specificity was also evaluated by forced degradation studies. Glyxambi® tablets were stressed and solutions were prepared with respective stressed samples and each stressed sample was injected into HPLC as per the proposed method. Peak purity was established by using Empower 2 Software form 200 - 400 nm.

Data obtained from each degradation condition along with the relevant degradation percent and the peak purities are given in the Tables 3 and 4. The results of the study show that the stressed conditions did not affect empagliflozin andlinagliptin.

Table 3:	Forced degradation	results of empagliflozin	l
Nature of degradation	Empag	gliflozin	Percent Assay
	Purity Angle	Purity Threshold	_
Acid	0.185	0.285	99.3
Base/Alkali	0.135	0.354	98.9
Peroxide	0.179	0.296	98.6
Dry heat	0.129	0.365	99.4
Photolytic	0.147	0.289	99.3
Neutral (control)	0.159	0.287	99.6
Table	4: Forced degradatio	n results of linagliptin	
		Linagliptin	
Nature of degradation	Purity Angle	Purity Threshold	Percent Assay
Acid	0.233	0.432	100.7
Base/Alkali	0.365	0.756	100.6
Peroxide	0.235	0.436	99.5
Dry heat	0.380	0.768	100.5
Photolytic	0.134	0.342	100.8
Neutral (control)	0.139	0.335	100.8

Figure 2: Acid degradation chromatogram and purity plot of empagliflozin and linagliptin

Figure 3: Alkali degradation chromatogram and purity plot of empagliflozin and linagliptin

Figure 4: Peroxide degradation chromatogram and purity plots of empagliflozin and linagliptin

Figure 5: Thermal degradation chromatogram and purity plot of empagliflozin and linagliptin

Figure 6: Photolytic degradation chromatogram and purity plot of empagliflozin and linagliptin

Figure 7: Control chromatogram and purity plot of empagliflozin and linagliptin

Accuracy: Accuracy was performed using the commercial drug product and active pharmaceutical ingredients, so it is not possible to obtain the exact placebo components to perform accuracy. So, accuracy was performed by adding known quantities of the analyte (standard solution) to a prequalified commercial tablet composite.

Weighed and transferred weight equivalent to one tablet of prequalified commercial tablet composite into a 100 mL volumetric flask. The amount present in each sample was calculated from the weight of the powder transferred into

the individual volumetric flask. Standard with known concentration was prepared and spiked into the prequalified commercial tablet dosage form. Three sets of empagliflozin and linagliptin accuracy samples were prepared at approximately 50%, 100% and 150% levels (n=9, three at each level). The recovery data was presented in Tables 5 and 6.

		Tabl	e 5: Percent	Recovery re	esults of empa	gliflozin			
Accuracy	Standard	Prequalified	Total	Area of	Amount	Percent	Mean %		
	added	sample	Amount	accuracy	Recovered	Recovered	Recovery	SD	%RSD
	(µg/ mL)	(µg/mL)	(µg/mL)	solution	(µg/mL)				
	47.956	96.016	143.972	317427	144.38646	100.288			
50%	47.956	97.064	145.020	316941	144.16540	99.411	99.532	0.703	0.71
	47.956	97.004	144.960	315173	143.36120	98.897			
	95.912	97.167	193.079	420692	191.35811	99.109			
100%	95.912	97.131	193.043	420068	191.07427	98.980	99.136	0.171	0.17
	95.912	97.362	193.274	422011	191.95807	99.319			
	143.868	99.166	243.033	530774	241.43057	99.341			
150%	143.868	97.177	241.045	523922	238.31383	98.867	99.391	0.550	0.55
	143.868	97.239	241.106	529870	241.01937	99.964			
		Overall N	Mean			99.353			
		Overall Standar	d deviation			0.487			
		Over all %	RSD			0.49			

Table 7: Percent Recovery results of linagliptin

Accuracy	Standard	Prequalified	Total	Area of	Amount	Percent	Mean %		
	added	sample	Amount	accuracy	Recovered	Recovered	Recovery	SD	%RSD
	(µg/ mL)	(µg/mL)	(µg/mL)	solution	(µg/mL)				
	26.341	52.014	78.355	159526	79.37012	101.296			
50%	26.341	51.829	78.170	159836	79.52436	101.733	101.551	0.227	0.22
	26.341	51.859	78.199	159725	79.46913	101.624			
	52.681	51.750	104.431	212551	105.75203	101.265			
100%	52.681	51.973	104.655	210999	104.97986	100.310	100.632	0.548	0.54
	52.681	52.156	104.838	211391	105.17489	100.322			
	79.022	51.970	130.993	263759	131.22992	100.181			
150%	79.022	52.169	131.191	264668	131.68218	100.374	100.398	0.230	0.23
	79.022	51.776	130.798	264572	131.63442	100.640			
		Overall	Mean			100.860			
		Overall Standa	rd deviation			0.616			
		Over all 9	% RSD			0.61			

Linearity: Linearity was demonstrated by preparing different concentrations of drug substance and analyzed as per the proposed method. A linear relationship was evaluated by calculation of a regression line by the method of least squares. A plot of the area of the peak as a function of analyte concentration was prepared. The correlation coefficient, y-intercept and slope of the regression line were calculated.

	Tuble of Emeanly	results of empugning		
Concentration(µg/mL)	Repetition 1Area	Repetition 2Area	Repetition 3Area	Average
25.149	58395	58856	58846	58699
50.298	101840	102681	102009	102177
75.446	154378	154634	154999	154670
100.595	214406	213569	214368	214114
125.744	263995	264807	263821	264208
150.893	316490	319167	318123	317927
201.191	420692	420068	422011	420924
251.488	530774	523922	529870	528189
slope	2103.075	2079.819	2101.811	2094.901
y intercept	41.260	2481.381503	580.711	1282
correlationcoefficient	0.9998	0.9998	0.9998	0.9998

Figure 8: Linearity plot of empagliflozin

	Table 9: Line	earity results of linagh	iptin	
Concentration(µg/mL)	Repetition 1Area	Repetition 2 Area	Repetition 3	Average
			Area	
12.624	30652	30426	30589	30556
25.248	55984	56159	56034	56059
37.872	82467	82396	82399	82421
50.496	105582	105980	105555	105706
63.120	135182	134529	135128	134946
75.744	158589	159397	158535	158840
100.992	212551	210999	211391	211647
126.240	263759	264668	264572	264333
slope	2056.889	2057.858	2057.775	2057.507
y intercept	4010.561	3924.434	3885.659	63.929
Correlationcoefficient	0.9999	0.9999	0.9999	0.9999

Limit of Detection and Limit of Quantification (LOD and LOQ): The limit of detection and limit of quantification were determined based on the calibration curve using the values of average slope, the standard deviation of y-intercepts of regression lines that have been obtained from the linearity study.

Analyte	SD	Slope	LOD	LOQ
			(µg/ mL)	(µg/ mL)
Empagliflozin	1281.779	2095	2.019	6.119
Linagliptin	63.929	2058	0.103	0.309

Robustness: Effect of flow rate, column temperature and mobile phase composition were studied. This test was carried out by injecting the working standard six times. The chromatograms showed that all the system suitability parameters such as peak area, theoretical plates, tailing factor and retention time of the analytes found satisfactory. Hence the developed stability indicating method was robust.

Table 11: Robustness results of empagliflozin

			Empagli	flozin
Parameters	Retention time(m	nin)	USP Plate Count	USP Tailing
Flow rate 0.8 mL		2.695	6101	1.12
Flow rate 1.2 mL		2.256	5778	1.15
Temperature 25°C		2.465	6009	1.10
Temperature 35°C		2.465	5769	1.10
Mobile phase *		2.463	5420	1.07
Mobile phase **		2.466	6137	1.16
Optimized condition		2.437	6127	1.15
	Table 12: Robustness	results of l	inagliptin	
			Linagl	iptin
Parameters	Retention time	USP Plat	te USP	USP
	(min)	Count	Tailing	g Resolution
Flow rate 0.8 mL	3.574	9103	1	.20 5.9
Flow rate 1.2 mL	2.987	8346	1	.20 5.7
Temperature 25 °C	3.263	8164	1	.21 5.6
Temperature 35 °C	3.262	8148	1	.20 5.7
Mobile phase *	3.219	8422	1	.20 5.4
Mobile phase **	3.306	8200	1	.20 5.9
Optimized condition	3.272	8133	1	.23 5.8
* Buffer solution and acetor	nitrile in 40: 60 V/V			
** Buffer solution and acete	onitrile in 50: 50 V/V			
-		3		

Feat Name. Empaginozin									
-	Peak Name	RT	Area	USP Plate Count	USP Tailing				
1	Empagliflozin	2.464	223666	5833	1.09				
2	Empagliflozin	2.465	223859	6141	1.10				
3	Empagliflozin	2.466	224221	5927	1.10				
4	Empagliflozin	2.465	223622	6033	1.10				
5	Empagliflozin	2.465	223564	6141	1.10				
6	Empagliflozin	2.466	224678	5980	1.10				
Mean		2.465	223935	6009	1.10				
Std. Dev.		0.001	435.337	121.626	0.004				
% RSD		0.03	0.19	2.02	0.37				

Peak Name: Empagliflozin

_	Peak Name: Linagliptin										
		Peak Name	RT	Area	USP Plate Count	USP Tailing	USP Resolution				
	1	Linagliptin	3.261	103096	8486	1.22	5.7				
	2	Linagliptin	3.263	101872	8100	1.20	5.6				
	3	Linagliptin	3.265	103929	7970	1.22	5.6				
┝	4	Linagliptin	3.261	103096	8321	1.22	5.7				
┝	5	Linagliptin	3.263	101872	7977	1.20	5.6				
ŀ	6	Linagliptin	3.265	103929	8130	1.22	5.6				
F	Mean		3.263	102966	8164	1.21	5.6				
F	Std. Dev.		0.002	925.441	203.071	0.010	0.052				
L	% RSD		0.05	0.90	2.49	0.85	0.92				

Figure 9: Robustness chromatograms of empagliflozin and linagliptin at flowrate 0.8 mL/min.

Figure 10: Robustness chromatograms of empagliflozin and linagliptin at flowrate 1.2 mL/min

Figure 11: Robustness chromatograms of empagliflozin and linagliptin attemperature 25 °C.

	Pea	ak Nar	ne: Emp	agliflozin	
	Peak Name	RT	Area	USP Plate Count	USP Tailing
1	Empagliflozin	2.461	217774	5315	1.05
2	Empagliflozin	2.462	219022	5485	1.08
3	Empagliflozin	2.464	220719	5476	1.08
4	Empagliflozin	2.464	217625	5355	1.07
5	Empagliflozin	2.464	219479	5419	1.08
6	Empagliflozin	2.463	220471	5472	1.07
Mean		2.463	219182	5420	1.07
Std. Dev.		0.001	1307.242	71.155	0.012
% RSD		0.05	0.60	1.31	1.09

			Peak Na	ame: Linagliptin		
	Peak Name	RT	Area	USP Plate Count	USP Tailing	USP Resolution
1	Linagliptin	3.218	101283	8242	1.19	5.4
2	Linagliptin	3.219	101618	8525	1.21	5.3
3	Linagliptin	3.219	102875	8471	1.20	5.3
4	Linagliptin	3.218	101294	8442	1.19	5.4
5	Linagliptin	3.218	102576	8427	1.20	5.4
6	Linagliptin	3.219	102695	8423	1.20	5.3
Mean		3.219	102057	8422	1.20	5.4
Std. Dev.		0.001	737.495	95.745	0.008	0.055
% RSD		0.02	0.72	1.14	0.63	1.02

Figure 13: Robustness chromatograms of empagliflozin and linagliptin at mobile phase - Buffer and Acetonitrile in the ratio 40:60 V/V

Figure 14: Robustness chromatograms of empagliflozin and linagliptin at mobile phase Buffer and Acetonitrile in the ratio 50:50 V/V

Stability of the Sample Solution: A study was conducted to establish the stability of the sample solution. Sample solutions were stored in tightly stoppered Pyrex glassware on the bench top. The sample solution was analyzed as per methodology at initially and at different time intervals. Calculated the percent assay at different time points. **Table 13:** Stability of sample solution

70 *	Б	1.61	2	1	т.	1	
1 ime	Empag	liflozin			Lina	gliptin	
	% Assay	Difference			% Assay	y Difference	
Initial	99.6		+ 0.2		98.9	-	+ 0.2
48 hours	99.8				99.1		
-							
0.80-		1 4	251				
		di.	ю -				
0.60-		ozin	iptin				
		Ħb	lagi				
₹ 0.40-		du	5				
		۳	Λ				
0.20-			1				
-			Л				
0.00							
	1.00 2.00	3.0	0	4.00	5.00	6.00	7.0

Figure 15: Chromatogram of the commercial formulation

Discussion

A novel stability indicating RP-HPLC method was developed and validated for simultaneous estimation of empagliflozin and linagliptin in the tablet dosage form. The proposed method can give faster elution of the analytes with good resolution.

	Table 14: Summary of the vali	dation			
Parameter		Result			
	USP Plate Count				
	6127	8133			
System suitability	USP tailing				
	1.15	1.23			
	% RSD				
	0.7	0.6			
Method precision	% RSD				
	0.49 and 0.15	0.49 and 0.35			
Specificity	Forced degradation (acid, base/alkali, peroxide, photolytic,				
	neutral (control)				
Accuracy	Percent Recovery				
Linearity	Correlation coefficient				
LOD and LOQ(µg/ mL)	2.019 and 6.119	0.103 and 0.309			
Robustness	With respect to temperature, mobile p	hase composition and flow			
	rate.	-			
Stability of the	Performed sample stability up to 48 hours				
Sample Solution					

Forced degradation studies were conducted to know the stability of the analytes under specified conditions. During the forced degradation study, the analytes were stable in all the conditions and no interferences were found, both *The Pharmaceutical and Chemical Journal*

drug peaks have purity angles lesser than their purity threshold indicating peak purity. The percent recovery and precision studies showed that the method is accurate and precise.

Conclusion

Thus, the present stability indicating RP-HPLC method was shown to be simple, specific, accurate, precise and robust and this method is suitable for simultaneous determination of empagliflozin and linagliptin in tablet formulations and for monitoring the degradation pattern of these drugs.

References

- [1]. Zinman, B., Wanner, C., Lachin, J. M., Fitchett, D., Bluhmki, E., Hantel, S., Mattheus, M., Devins, T., Johansen, O.E., Woerle, H.J. & Inzucchi, S. E. (2015). Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. *New england journal of medicine*, 373(22), 2117-2128.
- [2]. Frampton, J. E. (2018). Empagliflozin: a review in type 2 diabetes. Drugs, 78, 1037-1048.
- [3]. Sortino, M. A., Sinagra, T., & Canonico, P. L. (2013). Linagliptin: a thorough characterization beyond its clinical efficacy. *Frontiers in endocrinology*, *4*, 16.
- [4]. Graefe-Mody, U., Rose, P., Retlich, S., Ring, A., Waldhauser, L., Cinca, R., & Woerle, H. J. (2012). Pharmacokinetics of linagliptin in subjects with hepatic impairment. *British journal of clinical pharmacology*, 74(1), 75-85.
- [5]. Banik, S., Karmakar, P., & Miah, M. A. H. (2015). Development and validation of a UV-spectrophotometric method for determination of vildagliptin and linagliptin in bulk and pharmaceutical dosage forms. *Bangladesh Pharmaceutical Journal*, *18*(2), 163-168.
- [6]. El-Bagary RI, Elkady EF, Ayoub BM. (2012) Liquid chromatographic determination of linagliptin in bulk, in plasma and in its pharmaceutical preparation. Int J Biomed Sci, 8: 209-14.
- [7]. Shyamala, Nirmala K, Mounika J, Nandini B. (2016). Validated stability- indicating RP-HPLC method for determination of empagliflozin. Pharm Lett, 8: 457-64.
- [8]. Bakshi A, Mounika A, Bhutada S, Raju MB. (2018). Simultaneous estimation of empagliflozin and linagliptin by RP-HPLC method. World J Pharm Pharm Sci, 7:1062-71.
- [9]. Jyothirmai N, Begum KMD, Supriya P. (2016). Novel stability indicating RP-HPLC method for the simultaneous estimation of empagliflozin and linagliptin in bulk and pharmaceutical formulations. J Atoms Mol, 6: 977-86.
- [10]. Jayalaxmi, Rajesh T, Kumar GV. (2016). A validated RP- HPLC method for the simultaneous estimation of empagliflozin and linagliptin in its bulk and pharmaceutical dosage forms. Int J Chem Pharm Sci, 4: 634-40.
- [11]. Naazneen S, Sridevi A. (2016). Development and validation of stability indicating RP-HPLC method for simultaneous estimation of empagliflozin and linagliptin in tablet formulation. Pharm Lett,8: 57-65.
- [12]. Madhusudhan P, Reddy R, Deanna N. (2015). RPHPLC method development and validation for simultaneous determination of linagliptin and empagliflozin in tablet dosage form. Int Adv Res J Sci Eng Technol, 2: 95-9.
- [13]. Afzal SJ, Asif M, Khan PM. (2018). Validation of stability indicating high performance liquid chromatographic method for simultaneous determination of assay of linagliptin and metformin drugs in the pharmaceuticals tablet formulations using bupropion as a common internal standard. J Innov Pharm Biol Sci, 5: 21-8.
- [14]. Badugu LR. (2012). A validated RP-HPLC method for the determination of linagliptin. Am J PharmaTech Res, 2: 462-70.
- [15]. Sujatha K, Seshagirirao JV. (2013) A new RP-HPLC method for the estimation of linagliptin in tablet dosage forms. Indo Am J Pharm Res, 3: 8376-81.
- [16]. Patil SD, Amurutkar SV, Chatpalliwar VA, Upasani CD. (2017). Development and validation of RP-HPLC method for empagliflozin and metformin HCL. J Innov Pharm Biol Sci, 4:185-9.

- [17]. Godasu SK, Sreenivas SA. (2017). A new validated RP-HPLC method for the determination of metformin HCl and empagliflozin in bulk and pharmaceutical dosage and forms. Int J Pharm Sci Res, 8: 2223-32.
- [18]. Padmaja N, Veerabhadram G. (2016). Development and validation of a novel stability-indicating RP-HPLC method for the determination of empagliflozin in bulk and pharmaceutical dosage form. Int J Pharm Sci Res, 7: 4523-30.
- [19]. Donepudi S, Achanta S. (2018). Validated HPLC-UV method for simultaneous estimation of linagliptin and empagliflozin in human plasma. Int J Appl Pharm, 10:56-61.
- [20]. Kavitha KY, Geetha G, Hariprasad R, Kaviarasu M. (2013). Development and validation of stability indicating RP-HPLC method for the simultaneous estimation of linagliptin and metformin in the pure and pharmaceutical dosage form. J Chem Pharm Res, 5:230-5.
- [21]. Madhusudhan P, Radhakrishna MR, Devanna N. (2015). RP-HPLC method development and validation for simultaneous determination of linagliptin and empagliflozin in tablet dosage form. Int Adv Res J Sci Eng Technol, 2:95-9.
- [22]. Maha FA, Omar AA, Miriam FA, Mariam MT (2016). Pharmaceutical analysis of linagliptin and empagliflozin using LC-MS/MS. Pharma Chem 2016, 8: 186-9.
- [23]. Ayoub BM. (2015). UPLC simultaneous determination of empagliflozin, linagliptin and metformin. RSC Adv 116:95703-9.
- [24]. Bassam MA. (2016). Development and validation of simple spectrophotometric and chemometric methods for simultaneous determination of empagliflozin and metformin: Applied to the recently approved pharmaceutical formulation. Spectrochim Acta Part A,168:118-22.
- [25]. Padmaja N, Veerabhadram G. (2015). Development and validation of analytical method for simultaneous estimation of empagliflozin and linagliptin in bulk drugs and combined dosage forms using UV-visible spectroscopy. Pharm Lett, 7:306-12.

