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Abstract Previous studies have shown that Portulica Oleraceae ethanolic extract can significantly modulate the 

activity of several drug metabolizing enzymes, this may affect the bioavailability of drugs resulting in over dose or 

less therapeutic effects. This study was designed to assess the inhibitory effects of cisplatin (CDDP) and paclitaxel 

(PAX) on two types of CYP450 isoformers namely: CYP2E1 and CYP3A1/2 in hepatic microsomes isolated from 

normal and Portulica Oleraceae pretreated rats. CDDP and PAX were used by different concentrations to hepatic 

microsomes isolated from normal and Portulica Oleraceae (250 mg/kg/day) pretreated rats for 10 days after 

receiving pyrazole or dexamethasone for induction of CYP2E1 and CYP3A1/2 respectively. Addition of CDDP or 

PAX by (10, 50 and 100 μM) to hepatic microsomes from normal or Portulica Oleraceae pretreated rats caused a 

concentration dependent inhibition of CYP2E1, with an evidence of less inhibition in Portulica Oleraceae pretreated 

microsomes particularly at higher concentration. Cisplatin (CDDP) (10, 50 and 100 μM) caused a concentration 

dependant inhibition of CYP3A1/2 that was enhanced by Portulica Oleraceae pretreatment. The inhibitory 

influence of PAX (10, 50 and 100 μM) on CYP3A1/2 decreased with increasing the drug concentration and this 

inhibition was augmented by Portulica Oleraceae pretreatment. PAX has an inhibitory effect on 2E1 and 3A1/2 

isozymesmore than CDDP. Pretreatment with Portulica Oleraceae decreased an inhibition in 2E1, while the 

inhibition was enhanced by 3A1/2. In conclusion, Portulica Oleraceae pretreatment attenuated the inhibitory 

influence of cisplatin (CDDP) and paclitaxel (PAX) on CYP2E1 activity and magnified their inhibition on 

CYP3A1/2. Thus, use of Portulica Oleraceae ethanolic extract with drugs should raise concern for drugs–herb 

interactions. 
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Introduction 

Herbal extracts have many properties like antioxidant, anti-allergic, anti-inflammatory, antiviral, anti-proliferative 

and anti-carcinogenicity [1-2]. Natural antioxidants, which are capable of protecting the cells from oxidative injury, 

should be included in the potential antioxidant therapy. Therefore, there is a need for identifying alternative, natural 

and safer sources of antioxidants [3].  

Portulaca oleracea (PO) (family of Portulacaceae) is a genus of succulent herbs distributed in the warmer parts of 

the world and it is a well-known edible plant. Many active compounds are present including: Alkaloids (major 

components), flavonoids, monoterpenoids, coumarins, and volatile oils [4-5]. In PO, the flavonoids levels vary 

according to the part of the plant; the highest levels are present in seeds, root followed stem and leaf; and seven 

different flavonoids are present in this plant, including kaempferol, myricetin, luteolin, apigenin, and quercetin [6]. 

PO is a commonly found species and a medicinal food for human consumption, it contains minerals, proteins, 
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carbohydrates, β-carotene, vitamins and fatty acids [6-7]. This plant is also used as folk medicine in many countries 

with various pharmacological effects such as: hepatoprotective [9-10], anti-inflammatory [5], and strong anti-

oxidant [11]. Among the bioactive components and biological activities assigned to the PO, the presence of 

catecholamines [12] and its antioxidant and anti-inflammatory actions [13] deserve to be highlighted.  Moreover, the 

PO extracts decreased apoptosis and oxidative-stress-induced neuro-degeneration caused by the pesticide rotenone 

[14-15]. Dursun et al. [16] and Abd El-Aziz et al. [17] revealed that the bioactive compound and health effects of 

portulaca oleracea were alkaloids, Beta-carotene, Beta-sitosterol, caffeic acid, catechol, chlorophyll, coumarin, 

DHA, EPA, ferulic acid, flavonoids, saponin and tannin acts as analgesic, antiaggregant, antiarhritic, 

antiartheriosclerotic, anticancer (breast, colon, fore stomach, liver, skin) activities. 

Our previous studies of Nermien [18] stated that, Portulica oleraceae (PO) (Purslane) seeds and leaves reduce 

reactive oxygen species (ROS) and the toxic effect of CCl4 at high dose which exert a highly percentage of 

inhibition. These data suggest that purslane herb extract have a beneficial effect on reducing the toxicological effects 

as anti-inflammatory and the protective individual for oxidative stress diseases.    Also, our previous studies by 

Nermien [19] stated that, Portulica Oleraceae (seeds) exhibits good antioxidant, anti-inflammatory and variable 

cytotoxic activities on human breast (MCF-7) cancer cell line which may provide support for this extract potentiality 

as a chemo preventive agent and as a promising candidate for antineoplastic drug development.  

Jứlia et al. [20] stated that, the toxic effects of CDDP are associated with the production of reactive oxygen species 

(ROS) within the mitochondria. CDDP exposure results in an intracellular ROS increase in normal cells [21-22], and 

treatment with antioxidants can ameliorate cisplatin toxic effects on several organs [23-25], suggesting an 

involvement of oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the 

molecular mechanisms by which ROS are formed still remain unclear [26]. 

Cisplatin (platinum based drug) [27-28] and Paclitaxel (originally derived from the bark of the Pacific yew tree 

Taxus brevifolia) [29-30] are potent antineoplastic agents used for the treatment of a wide range of cancers. Being 

chemotherapeutic drugs, they are often associated with various degrees of interaction with the hepatic metabolizing 

enzymes. On the other side, paclitaxel is primarily metabolized by CYP3A1/2 and CYP2C8 into virtually inactive 

component exerted in bile [31]. Predating to that, Kostrubsky et al. [32] reported that paclitaxel at high 

concentrations, higher than 10 μM resulted in inhibition of CYP3A activity in isolated human hepatocytes. 

Paclitaxel (PAX) is oxidized to products that are less antineoplastic than the parent drug. The antineoplastic effects 

of taxanes observed in-vivo are apparently related to metabolic rates rather than to metabolic profiles [33]. 

The CYP monooxygenase super family is the most important phase I metabolic enzyme system in the liver. CYP is 

responsible for the metabolism of a wide variety of xenobiotics and endogenous compounds. The CYP450-dependent 

metabolism has also been demonstrated to be responsible for the toxicity of various xenobiotics [34-36]. In human, 

the major drug-metabolizing CYPs are CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 

[37]. Inhibition and induction of these CYP isoenzymes may result in toxicity or therapeutic failure and are the most 

common causes of drug–drug interactions [38-39]. CYP3A4 is present in abundance in human liver microsomes, 

and it metabolizes 50 % of clinical drugs, endogenous compounds and environmental pollutants [40]. For this 

reason, it is considered an important isozyme for the investigation of drug interactions via CYP. These reactive and 

toxic intermediates formed during its action increase the formation of oxygen and hydroxyl free radicals that 

damage cellular structure and cause hepatotoxicity [41-42]. 

Cytochrome P450 is a hemoprotein super family of isoenzymes that are responsible for the metabolism of a wide 

variety of foreign chemicals including anticancer drugs [34, 43]. P450s system is mainly localized in the liver more 

abundant than in any other organs such as lung, kidney or intestine [36]. Of various P450 isoenzymes, CYP2E1 is 

mainly expressed in liver and in small amounts in kidney, lung and gut [44-45]. It is a major isoenzyme involved in 

the bioactivation of chemicals and drugs to toxic metabolites supporting its role in hepatotoxicity by many drugs 

[45]. CYP2E1 itself is also an effective enzyme for ROS production, exhibiting enhanced NADPH oxidase activity, 

and elevated rates of O
2−

 and H2O2 production even in the absence of substrate [46-47]. 

To our knowledge, there are no reports regarding the modulatory effect of Portulica Oleraceae (PO) pretreatment on 

the inhibitory influence of cisplatin (CDDP) and paclitaxel (PAX) on certain P450 enzymes in isolated rat hepatic 
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microsomes from rat liver. Thus, the aim of this study was directed to investigate the inhibitory effects of CDDP and 

PAX on the activity of two CYP isoenzymes involved in drug metabolism namely CYP2E1 and CYP3A1/2 in 

isolated hepatic microsomes from normal and Portulica Oleraceae (PO) pretreated rats, to explore the possible 

modulatory effect of prior treatment with Portulica Oleraceae on the response of these CYP isoenzymes to the 

inhibitory effect of these anticancer drugs.  

 

Materials and Methods 

Drugs and chemicals 

Paclitaxel (PAX) was obtained from filaxis laboratories; Cisplatin (CDDP) was obtained from Korea United Pharm 

(KUP). Pyrazole, dexamethasone, erythromycin, p-nitrophenol and all other chemicals used throughout the present 

work were obtained in analytical and purified grade and were purchased from Sigma Chemical Co., St. Louis, USA. 

 

Preparation of Portulica Oleraceae ethanolic extract 

Seeds of Portulica Oleraceae were collected from Applied Research Center for Medicinal Plants (ARCMP), 

washed, dried, extracted by 80% ethanol according to Lee et al. [48], and the extract was lyophilized, and the 

lyophilized powder (ethanolic extract) was resuspended in saline and used in appropriate dose.  

 

Experimental animals 

Male Wistar albino rats weighed 200 ± 240 g were obtained from the animal house of the National Organization for 

Drug Control & Research (NODCAR), Giza, Egypt. Animals were housed under controlled temperature (25 ± 2 ºC) 

and constant light/dark cycle (12/12 h). They allowed free access to a standard rodent diet and water. The 

investigations complies with the guide for care and use of laboratory animals published by US National institutes of 

Health (NIH NO.85-23, revised in 1985) and was approved by the Ethics Committee for animal experimentation at 

Faculty of Pharmacy, Cairo University. 

Rats were divided into 4 groups of 6 animals each. Group 1 and 3 received at the beginning Portulica Oleraceae 

ethanolic extract at an oral dose of 250 mg/kg/day [49] for 10 consecutive days. Group 1 and 2 received i.p. dose of 

pyrazole 250 mg/kg/day for two days to induce CYP2E1 [50] which started at the 9
th

 day.  Group 3 and 4 received 

i.p. dose of dexamethasone 100 mg/kg/day for 3 days to induce CYP3A1/2 [51] which started at 8
th

 day. 

 

Preparation of hepatic microsomes 

24 hrs after the last treatment, rats from each group were sacrificed by decapitation and liver samples were isolated 

quickly and rinsed with ice-cold saline, dried. Preparation of hepatic microsomes was performed as described by 

Lake [52]. Briefly, liver samples were homogenized in 25 mM Tris–HCl (pH 7.5) containing 1 mM EDTA and 0.25 

M sucrose. The homogenate was centrifuged at 18,000g for 20 min. The supernatant was then centrifuged twice at 

100,000g for 60 min. The resulting microsomal pellets from each experimental group were pooled and resuspended 

in 0.1 M sodium phosphate buffer (pH 7.5) containing 20% glycerol and stored at −80 ºC until used. Protein 

concentration in the microsomal fraction was determined as previously described by Lowry et al. [53] using bovine 

serum albumin as a standard. 

 

Measurement of CYP2E1 and CYP3A1/2 activities in presence of different concentrations of cisplatin (CDDP) 

and paclitaxel (PAX) 

CYP2E1 activity was determined by using p-Nitrophenol hydroxylation assay as described by Alexidis et al. [34]. 

Briefly after incubation of hepatic microsomes (1-1.5 mg protein) from either untreated or Portulica Oleraceae 

pretreated animals with 5 mM p-nitrophenol and in the presence of (10, 50, 100 μM) of either cisplatin (CDDP) or 

paclitaxel (PAX) at 37 ºC for 15 min, 20%trichloroacetic acid was added to terminate the reaction, followed by 

addition of 10 mmol NaOH to develop the color. The enzyme specific activities were determined by quantifying the 

production of p-nitrocatechol spectrophotometrically at 510 nm (UV-Unicam spectrophotometer) and expressed as 

μmol/min/mg protein. CYP3A1/2 activity was measured colorimetrically by the measurement of formaldehyde 
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liberated due to N-demethylation of erythromycin based on the Hantzsch reaction as described by Alexidis et al. 

[34]. Briefly after incubation of hepatic microsomes (1-1.5 mg protein) from either untreated or Portulica Oleraceae 

pretreated animals with 5 mM erythromycin and in the presence of (10, 50, 100 μM) of either cisplatin or paclitaxel 

at 37 ºC for 15 min, together with 20 mM semicarbazide and 1 mM NADPH to initiate the reaction.  After 15 min, 

25% ZnSO4 was added to terminate the reaction followed by the addition of Nash reagent. The color developed by 

the reaction of Nash with the produced formaldehyde was measured spectrophotometrically (UV-Unicam) at 415 

nm. The enzyme specific activity was expressed as μmol/min/mg protein. 

 

Data analysis 

The results are presented as mean ± S.E. the values were obtained from the mean of triplicate incubations. The 

statistical analysis was conducted by using the SPSS program version 11.0 at P-value less than 0.05. An independent 

t-test, one-way ANOVA and The strength of association between pairs of variables was assessed by LSD 

comparison. 

 

Results  

The inhibitory effect of cisplatin (CDDP) and paclitaxel (PAX) on the activity of CYP2E1 in hepatic microsomes 

isolated from normal and Portulica oleraceae pretreated rats 

Figure 1(A and B) demonstrated that at 5 mM p-nitrophenol, addition of cisplatin (CDDP) or paclitaxel (PAX) by 

the three concentrations (10, 50, 100 μM) resulted in a sustained gradual reduction in hepatic normal microsomal 

CYP2E1 enzyme activity in concentration dependant manner. However, incubation of CYP2E1 enzyme from the 

Portulica oleraceae pretreated rats microsomes with cisplatin and paclitaxel at the above concentrations resulted in 

less inhibition of its activity particularly at higher concentrations of the drug. 

The inhibitory effect of CDDP was increased by increasing concentration but Portulica oleraceae pretreated rats 

resulted in decreased the inhibition by increasing concentrations. CYP2E1, the inhibitory effect of PAX was more 

than CDDP which lead to decrease the activity of 2E1. The low concentration of PAX by the concentration of 10μM 

was more effective on the activity of 2E1 than the highest concentration of 100μM. 

 

(A) 

 
Values are expressed as mean ±S .E.M. 
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(B) 

           
Values are expressed as mean ±S .E.M. 

Figure 1: The inhibitory effect of Cisplatin (A) and Paclitaxel (B) on the activity of CYP2E1 in hepatic microsomes 

isolated from normal (_____) and Portulica oleraceae (----) pretreated rats at concentration 5mM of p-

nitrophenol 

The inhibitory effect of cisplatin (CDDP) and paclitaxel (PAX) on the activity of CYP3A1/2 in hepatic 

microsomes isolated from normal and Portulica Oleraceae pretreated rats 

Data compiled in Figure 2(A and B) revealed that at substrate concentration of 5 mM erythromycin, incubation of 

the normal hepatic microsomes with cisplatin (10, 50 and 100 μM) showed gradual decline in CYP3A1/2 enzyme 

activity. While upon its incubation with paclitaxel, the inhibitory effect of the drug appeared to decrease by 

increasing the drug concentrations. Upon, addition of cisplatin or paclitaxel by the above three concentrations to 

hepatic microsomes from Portulica Oleraceae pretreated rats, the drugs exhibited more inhibition in the activity of 

CYP3A1/2 compared to the normal microsomes values particularly at high drug concentration.  

The inhibitory effect of PAX at 10μM was enhanced while this effect was decreased by increasing the concentration 

which increases the activity of 3A1/2. The inhibitory effect at high concentration of 100μM after Portulica 

Oleraceae pretreated rats was enhanced and the activity of 3A1/2 will decreased.  
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Values are expressed as mean ±S .E.M. 
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(B) 

 
Values are expressed as mean ±S .E.M. 

Figure 2: The inhibitory effect of Cisplatin (A) and Paclitaxel (B) on the activity of CYP3A1/2 in hepatic 

microsomes isolated from normal (_____) and Portulica oleraceae (----) pretreated rats at concentration 

5mM of p-nitrophenol. 

Discussions 

Cytochromes P450 are major oxidative enzymes that metabolize xenobiotics including anticancer drugs. Modulation 

of these enzymes can dramatically affect cytotoxicity and/or therapeutic efficacy of these drugs. In this study, the 

aim of this study was to investigate the inhibitory potency of cisplatin (CDDP) and paclitaxel (PAX) toward two 

P450 isoforms CYP2E1 and CYP3A1/2 occurring in differentially induced rat liver microsomes isolated from normal 

or Portulica oleraceae pretreated rats. p-Nitrophenol hydroxylation and N-demethylation of erythromycin reactions 

were chosen for the study of the inhibition of CYP2E1 and CYP3A1 activities respectively. 

The results of the present study clearly revealed that the activity of CYP2E1 was significantly inhibited by the three 

concentrations of CDDP and PAX (10, 50, 100 μM) after incubation of the hepatic microsomal fractions from 

normal rats with the drugs. The inhibitory effects of both drugs increased with increasing the drug concentrations in 

a concentration dependent manner. These results also indicated that PAX inhibited p-nitrophenol hydroxylation 

more strongly than CDDP. The inhibitory effect of CDDP on CYP2E1 was in line with the early observation of 

Masubuchi et al. [54] who observed a transient decrease in CYP2E1 activity after treatment with CDDP. This 

transient inhibition may be due to a direct effect of CDDP on CYP2E1. Moreover, Vaclavikova et al. [55] reported 

that CYP2E1 might be involved in PAX metabolism and cytotoxicity, since uninduced rat microsomes did not 

change the effect of the drug, whereas CYP2E1-induced rat microsomes increased its cytotoxicity. Indeed, the 

inhibition of CYP2E1 by PAX has not yet studied and defined. 

Owing to the roles played by CYP2E1 in mediating carcinogenesis and chemical cytotoxicity, modulation of 

CYP2E1 is an important issue in organ and tissue protection. Several studies have shown that Portulaca oleracea 

display several biological activities, such as anticancer, antioxidation, anti-inflammation, and immunity enhancing 

properties [6, 56-58]. Therefore, the inhibition of CYP2E1 by Portulica oleraceae, may have a crucial role in these 

pharmacological activities. CYP2E1 is a major isoenzyme involved in the bioactivation of chemicals and drugs into 

toxic metabolites which may contribute to their tissue toxicity, Portulaca oleracea, have a suppressive effect on the 

growth of HeLa and HepG2 cells in vitro, suggesting that the sulfation of Portulica oleraceae polysaccharides 

increases the cytotoxicity in tumor cells [59].  In addition, other bioactive compounds such as cerebrosides, 

homoisoflavonoids, and alkaloids also show in-vitro cytotoxic activities against human cancer cell lines [60].   

Pretreatment with Portulica oleraceae had been previously reported to have a protective effect against carbon 

tetrachloride-induced hepatotoxicity [61]. It appeared that the PO reduced the acute liver injury induced by CCl4 
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involving the enhancement of NF-κB activity, suggesting that, the edible plant Portulaca Oleracea L., may be used 

to protect against toxic effects of CCl4 and other chemical agents in liver.   Thus, the hepatoprotective effect of 

Portulica oleraceae (PO) may be related to inhibition or reduction of CYP2E1 isoforms, via reducing the formation 

of toxic metabolites.  

CYP2E1-mediated metabolism generates reactive oxygen species, such as oxygen and hydroxyl radicals, when these 

exceed the cellular detoxification systems, it results in oxidative stress with its various pathologic consequences 

[62]. Oxygen radicals play a key role in liver injury because of their interaction with cellular proteins or DNA [62-

63]. CYP2E1 over expression generated oxidative stress in a human hepatoma cell line and induced cytotoxicity to 

the cells [64], and CYP2E1 induction could alter immune system responses, leading to increased susceptibility to 

viral infection [65].     

Yan et al. [66] reported that, alkaloid including tetrahydropalmatine are reported to inhibit cytochromes P450 (CYPs) 

activity in-vitro. Also, they suggested that total alkaloid extract (TAE)-induced CYPs activity in the rat liver results 

from the elevated mRNA levels of CYPs. Co-administration of prescriptions containing Yanhusuo (Corydalis 

yanhusuo W.T. Wang; YHS) should consider a potential herb (drug)–drug interaction mediated by the induction of 

CYP2E1 and CYP3A1 enzymes. Yan et al. [66] revealed that, after treatment of rats for 14 days with total alkaloid 

extract (TAE) from (Corydalis yanhusuo W.T. Wang; YHS), both the enzyme activity and mRNA level of CYP2E1 

were significantly increased at all three (TAE) dosages. The liver injury caused by YHS, may thus have resulted 

from the induction of the drug metabolic enzyme CYP2E1 by long-term administration of YHS. Drug-drug 

interactions are of concern when low-dosage TAE from YHS as well as substrates of CYP2E1 are administered. 

Rosmarinic acid reduced CYP2E1 in rats treated with ethanol which induced CYP2E1 [67]. Turmeric pretreatment 

attenuated the inhibitory influence of cisplatin (CDDP) and paclitaxel (PAX) on CYP2E1 activity and magnified 

their inhibition on CYP3A1/2, thus the use of turmeric with drugs or other medications should raise concern for 

drugs–herb interactions [68]. Simvastatin (SV) exerted an oxidative stress which may be contributed to 

hepatotoxicity, while naringenin (NRG) attenuated this toxicity, so it may be of therapeutic use as adjuvant drug. 

Also, the inhibitory effects of these drugs toward CYP2E1 and CYP3A1/2 activities were dose-dependent. However, 

other experiments will have to be carried out to investigate the interaction between SV and NRG. If this interaction 

was confirmed in-vivo in human, these results should be taken into account to adjust doses in order to avoid adverse 

effects when grapefruit juice or one of its components such as NRG is co administered with SV [42]. 

At the present study, the activity of CYP3A1/2 was significantly inhibited by (10, 50 and 100 μM) of CDDP after 

incubation of the microsomal fraction with the drug. The inhibitory effect of CDDP was increased with increasing 

the drug concentrations (dose-dependent). These findings are in line with Ando et al. [69] who reported that 

CYP3A1/2 activity was moderately inhibited by CDDP at 10 μM concentration. On the other hand, addition of 

CDDP by the above three concentrations to CYP3A1/2 in microsomes isolated from Portulica oleraceae (PO) 

pretreated rat caused further inhibition of the enzyme activity as compared to the normal control values. Moreover, 

incubation of normal microsomes with (10, 50 and 100 μM) of PAX in the current study caused a significant 

inhibition in the activity of CYP3A1/2. However, the inhibitory effects of PAX decreased with increasing the drug 

concentrations. These results are complying with the work of Kostrubsky et al. [32] who demonstrated that 

treatment of CYP3A1/2 with concentrations of PAX higher than 10 μM caused a dose-dependent decrease in its 

activity and the amount of its enzyme protein. The same pattern of inhibition was also observed upon the addition of 

PAX in above concentrations to CYP3A1/2 of microsomes from Portulica oleraceae (PO) pretreated rats. The 

observed inhibition of the activity of CYP3A1/2 in response to Portulica oleraceae (PO) pretreatment in this study 

was in agreement with that of Syed and Paramjyothi [70] and Kimura et al. [71] they reported that Portulica 

oleraceae (PO) showed inhibition patterns for CYP3A4 and that human CYP3A4 and rat CYP3A1. 

The CYP3A subfamily is the most important hepatic metabolic enzyme in the metabolism of 40% to 60% of all 

drugs [72]. CYP3A4 is the most abundant CYP in the human liver, where it accounts for 30% of CYPs [73], and rat 

CYP3A1 is a homolog of human CYP3A4 [74]. CYP3A1 can catalyse the 6β-hydroxylation of testosterone [75] and 

the metabolism of a large variety of clinical medications, including many pediatric drugs [76], cyclosporin A [77]. 

CYP3A1 was significantly induced in the rat liver, lung, and intestine at 30 mg/kg (equivalent to the clinical 
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dosage), suggesting that TAE has the potential to produce CYP3A-mediated drug–drug interactions. Consumption 

of YHS or YHS-containing products with the substrates of CYP3A should be taken more attention because of the 

possibility of drug-drug interactions. Yan et al. [66] stated that, TAE from YHS significantly induced the mRNA 

expression and enzyme activity of CYP2E1 and CYP3A1 in the rat liver, lung, and intestine. Furthermore, enzyme 

activity correlated well with mRNA expression. The results of the present dose–response study in rats suggest that 

potential CYP2E1 and CYP3A drug-drug interactions are unlikely at clinical dosages of TAE, but need to be 

considered when high dosages of TAE or TAE-containing products are co administered with substrates of CYP1A2 

or CYP2C11. Complex herb (drug)-drug interactions may ensue from the co-administration of YHS with other 

drugs, which is mediated by CYP2E1 and CYP3A1 enzymes which was inagreement with our results. 

Zhou et al. [5] revealed that, in addition to flavonoids, another important chemical found in PO which is alkaloids 

including dopa, dopamine, and noradrenalin and this was in agreement with our results. 

 

Conclusions 

This in-vitro study showed that Portulica oleraceae (PO) ethanolic extract pretreatment modulates the activity of 

CYP450 enzymes, as it had strong inhibitory influence on CYP3A1/2 with a limited effect on CYP2E1.  Pretreatment 

with Portulica oleraceae attenuated the inhibitory effects of cisplatin (CDDP) and paclitaxel (PAX) on CYP2E1. 

However, this pretreatment enhanced the inhibitory influence of these drugs on CYP3A1/2.   
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