The Pharmaceutical and Chemical Journal, 2017, 4(4):39-46

Available online <u>www.tpcj.org</u>

Research Article

ISSN: 2349-7092 CODEN(USA): PCJHBA

Sudanese Petroselinum crispum Fixed Oil: GC-MS Analysis and Antimicrobial Activity

Abdel Karim M.^{1*}, Sima A. Khalid M.²

¹Sudan University of Science and Technology, Faculty of Science, Dept. of Chemistry, Sudan ²International University of Africa, Faculty of Pharmacy, Sudan

Abstract Information on plants used traditionally in Sudanese system of medicine is very scarce. Hence this study was undertaken to investigate the chemical constituents of *Petroselinum crispum* fixed oil and to evaluate its potential antimicrobial activity. 62 components were detected by GC-MS. Major components are: apiol (36.44%), 9-octadecenoic acid methyl ester (27.17%), 4-Methoxy-6-(2-propenyl)-1,3-benzodioxole12.12%) and 9, 12-octadecadienoic acid methyl ester (8.32%)

The antibacterial activity of the oil was evaluated via the diffusion bioassay against five standard human pathogens (Gram positive: *Staphylococcus aureus* and *Bacillus subtilis*; Gram negative: *Escherichia coli* and *Pseudomonasa aeruginosa* and the fungal species *Candida albicans*). The oil showed good activity against *Staphylococcus aureus* and *Bacillus subtilis* and also showed weak activity against *Escherichia coli* and *Pseudomonasa aeruginosa*.

Keywords Petroselinum crispum, Fixed Oil, GC-MS, Antimicrobial Activity

Introduction

Petroselinum crispum (Mill) Nyman Ex AW Hill (Apiaceae) is worldwide cultivated for its nutritive value [1]. Petroselinum crispum is a herb growing up to 30-100 cm in height [2]. Different parts of the herb find many applications in pharmaceutical, food industries and cosmetics [3]. The plant is reported to improve memory and brain functions [4]. In Sudanese traditional medicine Petroselinum crispum is used to treat a wide spectrum of diseases including: hemorrhoids, inflammation and kidney stones [5]. Local healers also use it as: emmenagogic, carminative and abortifacient [6]. Several reports testified the potential hypoglycemic, diuretic and hypolipidemic effects of this herb [7]. The plant has been shown to possess hepatoprotective, antimicrobial and anticoagulant activities [7]. Some phytochemicals have been reported from Petroselinum crispum including: luteolin and myrecitin beside caretenoids, terpenes, coumarins, tocoferol, apiin , apiol and ascorbic acid [8-9]. It has been demonstrated that supplementing experimental animals with Petroselinum crispum leaves enhanced plasma radical scavenging capacity [10]. Also a constituent of Petroselinum crispum is involved in the production of some perfumes and some kinds of soaps and creams [12].

Materials and Methods

Plant material

Seeds of *Petroselinum crispum* were purchased from the local market- Khartoum and authenticated by Institute of Aromatic and Medicinal Plants.

Instruments

A Shimadzo GC-MS-QP2010 Ultra instrument with RTX-5MS column (30m, length; 0.25mm diameter; 0.25 μ m, thickness) was used for GC-MS analysis.

Test organisms

Petroselinum crispum fixed oil was screened for antimicrobial activity using the standard microorganisms shown below:

Table 1: Test microorganisms					
S. No.	Micro organism	Туре			
1	Bacillus subtilis	G+ve			
2	Staphylococcus aureus	G+ve			
3	Pseudomonas aeroginosa	G-ve			
4	Escherichia coli	G-ve			
5	Aspergillus niger	fungus			
6	Candida albicans	fungus			

Methods

Phytochemical screening

Petroselinum crispum seeds (250 g) were extracted with 95% ethanol (soxhlet) until exhaustion. This prepared extract (PE) was used for phytochemical screening according to the method described by Harborne [13].

Extraction of Petroselinum crispum fixed oil

Powdered seeds of *Petroselinum crispum* (300g) were exhaustively macerated with n-hexane. The solvent was removed under reduced pressure to afford the oil. For GC-MS analysis, the oil (2 ml) was esterified via a methanoilc solution of NaOH and a methanoilc solution of H_2SO_4 .

GC-MS analysis

The oil from seeds of *Petroselinum crispum* was analyzed by GC-MS. A Shimadzo GC-MS instrument was used. Tables (2) and (3) display the oven temperature program and chromatographic conditions respectively.

Table 2: Oven temperature program						
Rate	Temperature (°C)	Hold Time (min. ⁻¹)				
-	150.0	1.00				
4.00	300.0	0.00				

Table 3: Chromatographic conditions					
Column oven temperature	150.0 °C				
Injection temperature	300.0 °C				
Injection mode	Split				
Flow control mode	Linear velocity				
Pressure	139.3 KPa				
Total flow	50.0 ml/ min				
Column flow	1.54 ml/sec				
Linear velocity	47.2 cm/sec				
Purge flow	3.0 ml/min				
Spilt ratio	- 1.0				

Antimicrobial assay

Preparation of bacterial suspensions

Mueller Hinton and Sabouraud dextrose agars were the media used as the growth media for the bacteria and the fungus respectively. The media was prepared according to the manufacturer instructions: one ml aliquots of 24 hours broth culture of the test organisms were aseptically distributed onto nutrient agar slopes and incubated at 37 °C for

24 hours. The bacterial growth was harvested and washed off with sterile normal saline, and finally suspended in 100 ml of normal saline to produce a suspension containing about 10^8 - 10^9 colony forming units per ml. The suspension was stored in the refrigerator at 4°C until used. The average number of viable organism per ml of the stock suspension was determined by means of the surface viable counting technique.

Serial dilutions of the stock suspension were made in sterile normal saline in tubes and one drop volumes (0.02 ml) of the appropriate dilutions were transferred by adjustable volume micropipette onto the surface of dried nutrient agar plates. The plates were allowed to stand for two hours at room temperature for the drop to dry, and then incubated at 37 $^{\circ}$ C for 24 hours.

Preparation of fungal suspensions

Fungal cultures were maintained on potato dextrose agar incubated at 25 °C for four days. The fungal growth was harvested and washed with sterile normal saline, and the suspension was stored in the refrigerator until used.

Testing for antimicrobial activity

The cup-plate agar diffusion method was adopted with some minor modifications, to assess the antimicrobial activity of the oil. (2 ml) of the standardized bacterial stock suspension were mixed with 200 ml of sterile molten nutrient agar which was maintained at 45 °C in a water bath. (20 ml) Aliquots of the incubated nutrient agar were distributed into sterile Petri dishes, the agar was left to settle. Each of these plates was divided into two halves. Two cups in each half (10 mm in diameter) were cut using sterile cork borer (No 4), each one of the halves was designed for a sample. Separate Petri dishes were designed for standard antimicrobial chemotherapeutics.

The agar discs were removed, alternate cup were filled with 0.1 ml samples and allowed to diffuse at room temperature for two hours. The plates were then incubated in the upright position at 37 °C for 24 hours. After incubation, the diameters of the resultant growth inhibition zones were measured in duplicates and averaged.

Results and Discussion

Petroselinum crispum seeds were screened for major secondary metabolite. Qualitative tests were positive for flavonoids, alkaloids, tannins, saponins and carbohydrates.

GC-MS analysis

Fixed oil of *Petroselinum crispum* was extracted by maceration from seeds and analyzed by GC-MS where 62 components (Table 4) were detected in total ions chromatograms (Figure 1).

Figure 1: Total ions chromatograms of Petroselinum crispum oil

Different constituents of *Petroselinum crispum* oil were identified and quantified by retention times and their characteristic fragmentation pattern. A Tabulation of oil constituents is given in Table (4)

Table 4: Total ions chromatograms of Petroselinum crispum oil

				Peak R	eport TIC		
Peak#	R.Time		Area	Area%	Name		
1	3.361	5	3417	0.00	Hexanoic acid, methyl ester		
2	3.544	2	7962	0.00	.alphaP	inene	
3	4.074	1	7027	0.00	.betaPin	iene	
4	4.235	3	3062	0.00	Pentanoi	c acid, 4-methyl-, methyl ester	
5	4.714	3	2398	0.00	D-Limon	ene	
6	5.103	3	2502	0.00	.gamma	Terpinene	
7	5.939	3	1056	0.00	Octanoic	acid, methyl ester	
8	6.904	5	8507	0.00	Thymol		
9	6.984	8	5559	0.01	Lalpha.	-Terpineol	
10	7.091	16	4344	0.01	Bicyclo[3	.1.1]hept-2-ene-2-methanol, 6,6-di	
11	7.420	3	8982	0.00	Citronell	l	
12	7.586	19	1489	0.01	3-(2-Hyd	roxy-cyclopentylidene)-2-methyl-p	
13	8.701	5	4674	0.00	Decanoic	acid, methyl ester	
14	9.122	68	7866	0.05	3-Cycloh	exene-1-methanol, .alpha.,.alpha.,	
15	9.580	47	5090	0.04	Naphthal	ene, 1,2,3,4,4a,5,6,8a-octahydro-7	
16	10.100	24	6718	0.02	1H-3a,7-1	Methanoazulene, octahydro-3,8,8-	
17	10.150	25	7761	0.02	Caryophy	yllene	
18	10.263	18	3234	0.01	Bicyclo[3	.1.1]hept-2-ene, 2,6-dimethyl-6-(4	
19	10.452	134	8679	0.10	(E)beta.	-Famesene	
20	10.599	16	9551	0.01	1H-Benze	ocycloheptene, 2,4a,5,6,7,8,9,9a-oc	
21	10.804	36	4047	0.03	.betacor	aene	
22	11.003	213	5670	0.16	Naphthal	ene, decahydro-4a-methyl-1-meth	
23	11.104	33	2939	0.02	Naphthal	ene, 1.2.3.4.4a.5.6.8a-octahydro-4	
24	11.162	85	7025	0.06	.betaBis	abolene	
25	11.293	70	1743	0.05	Dodecan	nic acid, methyl ester	
26	11,436	16411	2211	12.12	1.3-Benzo	dioxole, 4-methoxy-6-(2-propenyl	
27	11 719	2834	3982	2.09	Benzene	1.2.3-trimethoxy-5-(2-propenyl)-	
28	11.935	55	1533	0.04	Asarone	r,2,5 trimetnoxy 5 (2 propenyi)	
20	12 229	142	2825	0.11	1 3 5-Tri	nethoxy_2_propenvlbenzene	
30	12.269	184	6488	0.14	Carotol	netnoxy-2-propenyibenzene	
31	12.500	34	2394	0.03	1H-1 3-R	enzimidazole-2-methanol 5-meth	
32	12.024	109	2060	0.05	cis 3 But	vl 4 vinyl evclopentene	
32	12.995	40347	7272	26.44	cis-3-Butyi-4-vinyi-cyclopentene		
34	13.420	49347	0539	0.25	Apioi Mothyl totrodogongata		
34	13.393	940	2012	0.23	Metnyl tetradecanoate		
35	13.0/0	103	8200	0.03	1,5-BellZ	athory 21 mathylayonionhonono	
30	14.104	105	1625	0.00	C Ostada	consist asid mothyl optor (7)	
37	14.493	43	7900	0.03	Bontadaa	enoic acid, methyl ester, (Z)-	
30	14.033	103	7960	0.10	2 Donted	anoic acid, methyl ester	
39	14.0/1	105	1009	0.00	2-Feittau	ecanone, 0,10,14-trineenyi-	
40	15.134	27	4448	0.02	.aipnaS	antaloi	
41	15.450	362	2/8/	0.27	7,10,13-6	lexadecatrienoic acid, metnyl este	
42	15.484	3/1	2592	0.27	9-Hexade	cenoic acid, metnyl ester, (Z)-	
43	15.686	5525	3847	4.08	Hexadeca	inoic acid, methyl ester	
44	16.444	83	/198	0.06	7-Hexade	cenoic acid, methyl ester, (Z)-	
45	16.655	103	0433	0.08	Heptadec	anoic acid, methyl ester	
46	17.210	242	3051	0.18	6,9-Octadecadienoic acid, methyl ester		
47	17.252	155	6285	0.11	Cyclohexadecane		
48	17.354	11265	5745	8.32	9,12-Octadecadienoic acid (Z,Z)-, methyl e		
49	17.475	36796	2054	27.17	9-Octade	cenoic acid (Z)-, methyl ester	
50	17.533	487	9794	0.36	Phytol		
51	17.605	2195	9540	1.62	Methyl stearate		
52	17.900	652	5907	0.48	Tricyclo[5.1.0.0(3,5)]octane-2,6-dione, 1,3,4		
53	19.279	1532	1503	1.13	2-Butenoic acid, 2-methyl-, 2-(acetyloxy)-1,		
54	19.345	389	2483	0.29	Eicosano	ic acid, methyl ester	
	55	20 583		2845037	0.21	9-Octadecenoic acid, 1.2.3-propanetrivl.est	
-	56	20.063		135/2007	0.10	Docosanoic acid methyl astar	
-	57	20.905		600003	0.10	Tricosanoic acid, methyl ester	
_	5/	21./20		090902	0.05	Tetracentene	
	58	22.207		2722116	0.20	Tetracontane	
	59	22.464		1603442	0.12	Tetracosanoic acid, methyl ester	
	60	22.919		1454924	0.11	Tetratriacontane	
	61	23.615		25362901	1.87	Hexatriacontane	
	62	23.866		634637	0.05	Hexacosanoic acid, methyl ester	
			13	54059963	100.00		

Major co

Apiol (36.44%)

The EI mass spectrum of apiol is shown in Figure 2. The peak at m/z 222, which appeared at R.T. 13.428 in total ion chromatogram, corresponds $M^{+}[C_{12}H_{14}O_{4}]^{+}$. The peak at m/z 207 corresponds to loss of a methyl function and the peak at m/z 191 corresponds to loss of a methoxyl function.

Figure 3: Mass spectrum of 9-octadecenoic acid methyl ester

The mass spectrum of 9-octadecenoic acid methyl ester is displayed in Fig.3.The signal which appeared at m/z 296(R.T. 17.475 in total ion chromatogram) corresponds $M^+[C_{19}H_{36}O_2]^+$. The peak at m/z 265 accounts for loss of a methoxyl.

Figure 4: Mass spectrum of 4-methoxy-6-(2-propenyl)-1,3-benzodioxole

Figure 4 shows the mass spectrum of 1, 3-benzodioxole, 4-methoxy-6-(2-propenyl) .The peak at m/z 192(with R.T. 11.436 in total ion chromatogram) corresponds $M^+[C_{11}H_{12}O_3]^+$.The signal at m/z 177 is due to loss of a methyl function.

9, 12-Octadecadienoic acid methyl ester (8.32%)

Figure 5: Mass spectrum of 9, 12-octadecadienoic acid methyl ester

The mass spectrum of 9, 12-octadecadienoic acid methyl ester is shown in Fig. 5.The peak at m/z 294 (R.T. 17.354 in total ion chromatogram) corresponds $M^+[C_{19}H_{34}O_2]^+$.Loss of a methoxyl gave m/z 263. Hexadecanoic acid, methyl ester (4.08%)

Figure 6: Mass spectrum of hexadecanoic acid, methyl ester

The EI mass spectrum of hexadecanoic acid, methyl ester is depicted in Fig. 6. The peak at m/z 270, which appeared at R.T. 15.686 in total ion chromatogram, corresponds $M^+[C_{17}H_{34}O_2]^+$ while the signal at m/z 239 is attributed to loss of a methoxyl function.

5-(2-propenyl) -1, 2, 3-trimethoxybeneze (2.09%)

Figure 7: Mass spectrum of 5-(2-propenyl) -1, 2, 3-trimethoxybeneze

Mass spectrum of 5-(2-propenyl) -1, 2, 3-trimethoxybeneze is shown in Fig. 7.The peak at m/z 208, which appeared at R.T. 11.719 in total ion chromatogram, corresponds to $M^+[C_{12}H_{16}O_3]^+$. The peak at m/z 193 corresponds to loss of a methyl function.

Antimicrobial activity

The oil was screened for antimicrobial activity against five standard clinical isolates. The results are shown in Table (5). Results were interpreted in conventional terms: (<9mm: inactive; 9-12mm: partially active; 13-18mm: active; >18mm:very active) .Tables (6) and (7) represent the antimicrobial activity of standard antibacterial and antifungal chemotherapeutic agents against standard bacteria and fungi respectively.

The Pharmaceutical and Chemical Journal

Table 5: Antibacterial activity of *Petroselinum crispum* oil: M.D.I.Z (mm)

Drug	Conc.(mg/ml)	Ec	Ps	Sa	Bs	Ca
Petroselinum crispum oil	100	9	10	15	14	8

Drug	Conc. (mg/ml)	Bs.	Sa.	Ec.	Ps.
Ampicillin	40	15	30	-	-
	20	14	25	-	-
	10	11	15	-	-
Gentamycin	40	25	19	22	21
	20	22	18	18	15
	10	17	14	15	12

Table 6: Antibacterial activity of standard chemotherapeutic agents

Table 7: Antifungal	activity of	standard chemo	otherapeutic	agent
---------------------	-------------	----------------	--------------	-------

Drug	Conc. (mg/ml)	An.	Ca.
Clotrimazole	30	22	38
	15	17	31
	7.5	16	29

Sa.: Staphylococcus aureus

Ec.: Escherichia coli

Pa.: Pseudomonas aeruginosa

An.: Aspergillus niger

Ca.: Candida albicans

Bs.: Bacillus subtilis

The oil showed good activity against *Staphylococcus aureus* and *Bacillus subtilis*. It also showed weak activity against *Escherichia coli* and *Pseudomonas aeruginosa*.

References

- 1. Bailey, L. H., Hortorium, L. H. B., & Bailey, E. Z. (1976). Hortus third; a concise dictionary of plants cultivated in the United States and Canada.
- 2. Menglan, S., Fading, P., Zehui, P., Watson, M. F., Cannon, J. F., Holmes-Smith, I., Kljuykov, E.V. Phillippe, L.R., & Pimenov, M. G. (2005). Apiaceae (Umbelliferae). *Flora of China*, *14*, 1-205.
- Lopez, M. G., Sanchez-Mendoza, I. R., & Ochoa-Alejo, N. (1999). Compartive study of volatile components and fatty acids of plants and in vitro cultures of parsley (Petroselinum crispum (Mill) nym ex hill). *Journal of agricultural and food chemistry*, 47(8), 3292-3296.
- 4. Adams, M., Gmünder, F., & Hamburger, M. (2007). Plants traditionally used in age related brain disorders—A survey of ethnobotanical literature. *Journal of Ethnopharmacology*, *113*(3), 363-381.
- Ezer, N., & Arisan, Ö. M. (2006). Folk medicines in Merzifon (Amasya, Turkey). Turkish Journal of Botany, 30(3), 223-230.
- 6. Soysal, Y. (2004). Microwave drying characteristics of parsley. *Biosystems engineering*, 89(2), 167-173.
- Sener, G., Saçan, Ö., Yanardag, R., & Ayanoglu-Dülger, G. (2003). Effects of parsley (Petroselinum crispum) on the aorta and heart of STZ induced diabetic rats. *Plant Foods for Human Nutrition (Formerly Qualitas Plantarum)*, 58(3), 1-7.
- Fejes, S., Kery, A., Blazovics, A., Lugasi, A., Lemberkovics, E., Petri, G., & Szöke, E. (1998). Investigation of the in vitro antioxidant effect of Petroselinum crispum (Mill.) Nym. ex AW Hill. *Acta Pharmaceutica Hungarica*, 68(3), 150-156.

- 9. Vora, S. R., Patil, R. B., & Pillai, M. M. (2009). Protective effects of Petroselinum crispum (Mill) Nyman ex AW Hill leaf extract on D-galactose-induced oxidative stress in mouse brain. Indian *Journal of Experimental Biology*, 47, 338-342.
- Hempel, J., Pforte, H., Raab, B., Engst, W., Böhm, H., & Jacobasch, G. (1999). Flavonols and flavones of parsley cell suspension culture change the antioxidative capacity of plasma in rats. *Molecular Nutrition & Food Research*, 43(3), 201-204.
- Nielsen, S. E., Young, J. F., Daneshvar, B., Lauridsen, S. T., Knuthsen, P., Sandström, B., & Dragsted, L. O. (1999). Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. *British Journal of Nutrition*, 81(6), 447-455.
- 12. Tahan, M., & Bayram, I. (2011). Effect of using black cumin (Nigella sativa) and parsley (Petroselinum crispum) in laying quail diets on egg yield, egg quality and hatchability. *Archiva Zootechnica*, *14*(4), 39-44.
- 13. Harborne, J.B., (1976). "Phytochemical Methods", Chapman and Hall, London.

