Fourth Geometric Arithmetic Index of Polycyclic Aromatic Hydrocarbons (PAH_k)

Muhammad Kamran Jamil¹, Mohammad Reza Farahani²*, M.R. Rajesh Kanna³

¹Department of Mathematics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore, Pakistan
²Department of Applied Mathematics of Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran.
³Department of Mathematics, Maharani's Science College for Women, Mysore-570005, India.

Abstract The geometric-arithmetic index of a graph G is defined as

\[GA(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d(u)d(v)}}{d(u) + d(v)} \]

Recently, Ghorbani et al. introduced the eccentric version of the geometric-arithmetic index as

\[GA_e(G) = \sum_{uv \in E(G)} \frac{2\sqrt{\varepsilon(u)\varepsilon(v)}}{\varepsilon(u) + \varepsilon(v)} \]

where \(\varepsilon(u) \) is the eccentricity of the vertex u. In this paper, we compute the fourth geometric-version of Polycyclic aromatic hydrocarbons (PAH_k).

Keywords Geometric-arithmetic, Topological indices, Zagreb indices, Polycyclic Aromatic Hydrocarbons

Introduction

Let \(G(V,E) \) be a graph, where \(V \) and \(E \) represent the vertex set and edge set, respectively. The degree of a vertex \(v \) in a graph \(G \) is the number of vertices adjacent with \(v \) and denoted as \(d(v) \). The maximum degree in a graph \(G \) is denoted as \(\Delta(G) \) and the minimum degree as \(\delta(G) \). A vertex with degree 1 is called a pendant vertex. The distance between \(u \) and \(v \) in a graph \(G \) is the length of the shortest path between them denoted as \(d(u,v) \) and the eccentricity of a vertex \(v \) is the largest distance between \(v \) and any other vertex \(u \) of \(G \) i.e. \(\varepsilon(v) = \max\{d(v,u) | \forall u \in V(G)\} \). Among the eccentricity over all vertices of \(G \) the minimum and maximum are called the radius and diameter of \(G \).

Topological indices are the numerical value associated with chemical constitution professes for correlation of chemical structure with various physical properties, chemical and biological activity. The topological index of a molecule is a non-empirical numerical quantity that quantifies the structure and the branching pattern of molecule. There are hundreds of degree based and distance based topological indices have been introduced up to now.

The Zagreb indices have been introduced more than thirty years ago by Gutman and Trinajstić [1]. They are defined as:

\[M_1(G) = \sum_{v \in V(G)} d(v)^2 \]

\[M_2(G) = \sum_{uv \in E(G)} d(u) \times d(v) \]

The geometric-arithmetic index of a graph \(G \), \(GA(G) \), proposed by Vukicević and Furtula [2] as:

The Pharmaceutical and Chemical Journal
In 2010, M. Ghorbani and A. Khaki [3] defined the eccentric version of geometric-arithmetic index named as geometric-arithmetic eccentricity index and defined as

$$GA_e(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d(u)d(v)}}{d(u) + d(v)}$$

For history and more results about the geometric-arithmetic indices reader may see [4-10].

![Figure 1: First few members of Polycyclic aromatic hydrocarbons (PAHk).](image1)

Polycyclic Aromatic Hydrocarbons (PAH\textsubscript{k}) discussed here is a family of hydrocarbon molecules, which consists of several copies of benzene on circumference and is ubiquitous combustion products. They are of interest as molecular analogues of graphite as candidates for interstellar species and as building blocks of functional materials for device applications. This can be thought as small pieces of graphene sheets with the free valences of the dangling bonds saturated by Hydrogen. Figure 1 shows first few members of this family and Figure 2 is its general representation. Further information can be found in [11-16].

![Figure 2: The general representation of Polycyclic aromatic hydrocarbons (PAHk).](image2)
Results
In this section, we computed the fourth version of geometric-arithmetic index of Polycyclic aromatic hydrocarbons (PAHs). We used the ring cut method to divide the vertices of this structure. In ring cut method, all vertices of G are partitioned and we insert some vertices of G in a common ring-cut, such that these vertices have similar mathematical properties [17,18].

Theorem 1: Let the Polycyclic aromatic hydrocarbon (PAH), then the fourth geometric-arithmetic index of PAH is given as

$$GA_4(PAH_k) = 12 \sum_{i=1}^{k} \left[\frac{2(i-1)\sqrt{(2k+2i-1)(2k+2i-2)}}{4k+4i-3} + i\sqrt{(2k+2i-1)(2k+2i)} + \sqrt{(4k+1)(2k+2i)} \right]$$

Proof: We denote the pendent vertices by α and the vertices of degree three by β and γ. So the vertex set is

$$V(PAH_n) = \{ \alpha_{z,j}, \beta_{i,j}, \gamma_{i,j} | i=1,..,k, j \in \mathbb{Z}_i & l \in \mathbb{Z}_j & z \in \mathbb{Z}_6 \}$$

$$E(PAH_n) = \{ \alpha_{z,j}, \beta_{i,j}, \gamma_{i,j} | i=1,..,k, j \in \mathbb{Z}_i & l \in \mathbb{Z}_j & z \in \mathbb{Z}_6 \}$$

From the references [19-22] and Figure 3 we have the following information:

Figure 3: A vertex wise representation of polycyclic aromatic hydrocarbons PAH

I. For all vertices α_{z,j} (hydrogen (H) atoms) of PAH_{n} (i=1,..,k; z=1,..,6)
\[e(\alpha_{z,j}) = d(\alpha_{z,j}, \gamma_{z,j}^k) + d(\gamma_{z,j}^k, \gamma_{z,j}^{k+1}) + d(\gamma_{z,j}^{k+1}, \alpha_{z,j}) = 4k + 1 \]

II. For all vertices \(\beta_{z,j}^i \) of \(PAH_k (\forall i=1, \ldots, k; \ z \in \mathbb{Z}_0, j \in \mathbb{Z}_1) \)
\[e(\beta_{z,j}^i) = d(\beta_{z,j}^i, \beta_{z+j+3,j}^i) + d(\beta_{z+j+3,j}^i, \gamma_{z+j+3,j}^k) + d(\gamma_{z+j+3,j}^k, \alpha_{z,j}) = 2k + 2i - 1 \]

III. For all vertices \(\gamma_{z,j}^i \) of \(PAH_k (\forall i=1, \ldots, k; \ z \in \mathbb{Z}_0, j \in \mathbb{Z}_1) \)
\[e(\gamma_{z,j}^i) = d(\gamma_{z,j}^i, \gamma_{z+j+3,j}^i) + d(\gamma_{z+j+3,j}^i, \gamma_{z+j+3,j}^{k+1}) + d(\gamma_{z+j+3,j}^{k+1}, \alpha_{z,j}) = 2(k+i) \]

To obtain the final result, we apply this information on the definition of fourth geometric-arithmetic index

\[GA_4(PAH_k) = \sum_{u \in E(G)} \frac{2\sqrt{e(u)e(v)}}{e(u) + e(v)} \]

\[= \left(\sum_{\beta_{z,j}^i, \gamma_{z,j}^i \in PAH_k} \frac{2\sqrt{e(\beta_{z,j}^i)e(\gamma_{z,j}^i)}}{e(\beta_{z,j}^i) + e(\gamma_{z,j}^i)} \right) + \left(\sum_{\beta_{z,j}^i, \gamma_{z,j}^i \in PAH_k} \frac{2\sqrt{e(\beta_{z,j}^i)e(\gamma_{z,j}^{i+1})}}{e(\beta_{z,j}^i) + e(\gamma_{z,j}^{i+1})} \right) + \left(\sum_{\beta_{z,j}^i, \gamma_{z,j}^i \in PAH_k} \frac{2\sqrt{e(\gamma_{z,j}^i)e(\gamma_{z,j}^{i+1})}}{e(\beta_{z,j}^i) + e(\gamma_{z,j}^{i+1})} \right) + \left(\sum_{\alpha_{z,j}^i, \beta_{z,j}^i \in E(G)} \frac{2\sqrt{e(\alpha_{z,j}^i)e(\gamma_{z,j}^i)}}{e(\alpha_{z,j}^i) + e(\gamma_{z,j}^i)} \right) \]

\[= \sum_{z=1}^{6} \left(\sum_{i=2}^{k} \sum_{j=1}^{i} \frac{2\sqrt{e(\beta_{z,j}^i)e(\gamma_{z,j}^i)}}{e(\beta_{z,j}^i) + e(\gamma_{z,j}^i)} \right) + \sum_{z=1}^{6} \left(\sum_{i=2}^{k} \sum_{j=1}^{i} \frac{2\sqrt{e(\beta_{z,j}^i)e(\gamma_{z,j}^{i+1})}}{e(\beta_{z,j}^i) + e(\gamma_{z,j}^{i+1})} \right) + \sum_{z=1}^{6} \left(\sum_{i=2}^{k} \sum_{j=1}^{i} \frac{2\sqrt{e(\gamma_{z,j}^i)e(\gamma_{z,j}^{i+1})}}{e(\beta_{z,j}^i) + e(\gamma_{z,j}^{i+1})} \right) + \sum_{z=1}^{6} \left(\sum_{i=2}^{k} \frac{2\sqrt{e(\alpha_{z,j}^i)e(\gamma_{z,j}^i)}}{e(\alpha_{z,j}^i) + e(\gamma_{z,j}^i)} \right) \]

\[= \sum_{i=2}^{k} \frac{2\sqrt{(2k+2i-1)(2k+2i-2)}}{(2k+2i-1)+(2k+2i-2)} + \sum_{i=2}^{k} \frac{2\sqrt{(2k+2i-1)(2k+2i-2)}}{(2k+2i-1)+(2k+2i-2)} + \sum_{i=2}^{k} \frac{2\sqrt{(2k+2i-1)(2k+2i-2)}}{(2k+2i-1)+(2k+2i-2)} + \sum_{i=2}^{k} \frac{2\sqrt{(2k+2i-1)(2k+2i-2)}}{(2k+2i-1)+(2k+2i-2)} \]
\[
\begin{align*}
&+ \sum_{i=1}^{k} 6i \left[\frac{2(2k+2i-1)(2k+2i)}{(2k+2i-1)+(2k+2i)} \right] + \sum_{i=1}^{k} 6 \left[\frac{2(2k+2i-1)(2k+2i)}{(2k+2i-1)+(2k+2i-1)} \right] \\
&+ \sum_{i=1}^{k} 6 \left[\frac{2(4k+1)(2k+2i)}{(4k+1)+(2k+2i)} \right] \\
&= \sum_{i=2}^{k} 24(i-1) \left[\frac{\sqrt{(2k+2i-1)(2k+2i-2)}}{4k+4i-3} \right] + \sum_{i=1}^{k} 12i \left[\frac{\sqrt{(2k+2i-1)(2k+2i)}}{4k+4i-1} \right] + \\
&\sum_{i=1}^{k} 12 \left[\frac{\sqrt{(4k+1)(2k+2i)}}{6k+2i+1} \right] + \sum_{i=1}^{k} 6 \\
&= 12 \sum_{i=1}^{k} \left[\frac{2(i-1)\sqrt{(2k+2i-1)(2k+2i-2)}}{4k+4i-3} + i\frac{\sqrt{(2k+2i-1)(2k+2i)}}{4k+4i-1} + \frac{\sqrt{(4k+1)(2k+2i)}}{6k+2i+1} \right] + 6k
\end{align*}
\]

So, the proof is complete. ■

References

The Pharmaceutical and Chemical Journal

