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Abstract Let G=(V,E) be a simple connected molecular graph. Khadikar et.al. introduced the PI index defined 

by 



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uvv GenGenGPI , where )|( Genu is the number of vertices of G lying closer to 

u and )|( Genu  is the number of vertices of G lying closer to v. In this paper, we compute a closed formula of 

vertex PI index for Polycyclic Aromatic hydrocarbons. 
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Introduction 

Let G be a simple molecular graph such that its vertices set V(G) and edge set E(G) corresponds to the atoms and 

bonds respectively. In graph theory, vd is the degree of a vertex )(GVv , the number of adjacent vertices 

with v or the size of first neighborhood of vertex v. An edge e=uv of graph G is attached between two vertices u 

and v. The distance between two vertices )(, GVvu  is equal to the number of edges on shortest path between 

them and it is denoted by d(u,v). 

A topological index is a numerical quantity associated with graph G. In mathematical chemistry, many 

topological indices are introduced so far. For any molecular graph G they are invariant on the graph 

automorphism. 

 H. Wiener [1] defined the notion of the Wiener index and defined as:  
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I. Gutman et. al. [2,3] defined the vertex and edge versions of Szeged index, which are defined as 

  )]|()|([)( GenGenGSz vuv  
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where nu(e|G) and mu(e|G) represents the number of vertices of G lying closer to u than to v and mu(e|G)is the 

number of edges of G lying closer to u than to v, respectively, analogously nv(e|G) and mu(w|G).  

Khadikar [4] and Ashrafi [8] proposed the edge and vertex versions of Padmakar-Ivan index (PI). These 

versions of PI index of a graph G is defined as: 
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See the paper series for further details [4-9]. 

Polycyclic Aromatic Hydrocarbons 

kPAH considered here is a family of such hydrocarbons containing several copies of benzene on circumference 

and is ubiquitous products. Polyaromatic hydrocarbons can be pictured as a small piece of graphene sheets with 

the free valances of dangling bond saturated by H vice versa, which can be interpreted as an infinite PAH 

molecule. These type of molecules has utilization in modeling graphite surface [10-16]. 

Main Result: 

Let PAHk be the Polycyclic Aromatic Hydrocarbons (∀k≥1). Then the PI index of PAHk is equal to: 

]1918[)1(18)( 22  kkkkPAHPI kv  

Proof. Consider the general representation of the Polycyclic Aromatic Hydrocarbons PAHk (∀k≥1) as shown in 

Figure 1, we see that PAHk has 6k
2
+6k vertices/atoms and 9k

2
+3k edge/bonds (|E(PAHk)|), such that 6k

2 
of its 

verities are Carbon atoms with three bonds and 6k
 
of its verities are Hydrogen atoms with one bond.  

 

 
Figure 1: All orthogonal cuts of PAHk. 

Our aims is to compute the PI index of the Polycyclic Aromatic Hydrocarbons PAHk. So, we cut PAHk and see 

that for an arbitrary edge cut e=uv (∊E(PAHk)), there is an orthogonal cut C(e).  

One can see that for i
th

 orthogonal cut Ci (∀i=0,1,2,…,k); there are k+i co-distance edges of PAHk, and this imply 

that for all edge e=uv∊Ci⊂E(PAHk),there are k+i repetitions of the vertex partitions Nu(e|PAHk) and Nv(e|PAHk) 

such that  

nv(e|PAHk)=|{x|xV(PAHk),d(v,x)<d(x,u)}=i
2
+2(k+1)i+k. 

From Figure 1, it’s easy to see that for all edge e=uv∊E(PAHk), N(e|PAHk)=∅ and n(e|PAHk)=0. Thus  

|V(PAHk)|=n(e|PAHk)+nv(e|PAHk)+nu(e|PAHk) and nu(e|PAHk)=|V(PAHk)|-nv(e|PAHk). 

Therefore,  

)},(),(,)(/{)|( vxdxudPAHVxxPAHen kku  = ikikk )1(256 22   

Now by using the above calculations, we can compute the PI index of the Polycyclic Aromatic Hydrocarbons 

PAHk (∀k≥1) as follow: 

( )

( ) ( ( | ) ( | ))
k

v k v k u k

e uv E PAH

PI PAH n e PAH n e PAH
 

   
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And this completes the proof of theorem. ■ 
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